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Abstract—Multimodal video classification aims to incorporate
semantic information to regularize the visual representation
learning of videos. Conventional methods typically focus on
analyzing all information extracted from different modals rather
than key information. However, they usually face the problem
of handling the redundant video frames of little categorical
information. To address this problem, this paper proposes a
novel approach that employs multi-channel weighting of visual
frames to mitigate the interference of redundant information.
Specifically, the proposed algorithm, termed MCA-WF, includes
two main modules, where the multi-channel attentive weighting
of video frames (McAW) module performs the multi-granularity
and multi-channel frame weighting mechanism based on visual
self-attention, contrastive attention and cross-modal attention
constraints to filter visual noise and redundant information. The
visual frame selection (VFS) module explores the combination
of multi-channel attention mechanisms to select the key visual
information in the video. Experiments were conducted on MSR-
VTT and ActivityNet Captions datasets in terms of performance
comparison, ablation study, in-depth analysis, and case studies.
The results verified that MCA-WF can notice the key information
in the classification and effectively improve the ability of infor-
mation complementation and integration between modals, which
leads to better performance than the state-of-the-art methods.

Index Terms—Video classification, Multimodal information,
Multi-channel, Key-frame selection, Attention.

I. INTRODUCTION

Online video platforms have become one of the most popular
applications that can collect short videos uploaded by users
and also provide users with search functions based on video
classes. Video classification has to deal with visual frames, text
descriptions and audio information. Existing studies focus on
extracting all modal information from the video. However, it
has been observed that even the state-of-the-art methods [1]–
[3] face problems in distinguishing the video classes in the
diversity of video content scenarios due to the interference
of redundant information and visual noise. Therefore, robust
visual and semantic feature learning methods are urgently
needed to extract key information.

The video classification task can be simply described as
assigning the correct labels to visual content at the video level
or the frame level. It is inherently continuous and multimodal,
so deep neural models need to capture and aggregate the most
relevant signals for a given input video. To achieve this goal,
existing multimodal video classification methods typically
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Fig. 1. Illustration of MCA-WF for video classification with multimodal
information. The attentive weighting of video frames module fuses the multi-
channel attention to generate weights of the video frames. Frame selection
module selects the key frames of the video.

follow two main approaches, which can be classified based
on multimodal fusion methods [4], [5] and based on multi-
image frame processing methods [6]–[9]. Methods based on
multimodal fusion fuse information from different modalities
to achieve information complementarity. Methods based on
multi-frame processing extract and fuse video frames, using
visual features in the video for classification. However, these
methods lack the ability to select key frames in the video and
to extract collaborative semantic information from the different
modalities. This can lead to biases in feature fusion and model
learning. At the same time, little thought has been given to
the selection of video frames, resulting in a large number
of redundant video frames that obscure the features between
the different categories. Therefore, how to select high-quality
keyframes and how to deal with the heterogeneity between
modalities is an urgent problem that needs to be solved.

To address these issues, this paper presents a novel ap-
proach, termed MCA-WF, which is able to effectively mitigate
the model fit deviation on training data caused by the lack of
key information constraints, and enhance the representation
learning ability between heterogeneous modalities. As illus-
trated in Figure 1, MCA-WF uses the multi-channel attentive
weighting of video frames method to extract key frames while
mitigating the influence of redundant and noisy video frames.
Specifically, MCA-WF introduces a three-level weighting of
visual frames method, including visual self-attention weighting
(V-ATT), contrastive attention weighting (C-ATT), and cross-
modal attention weighting (CM-ATT). In the V-ATT method,
it is it possible to select important information in successive
frames and filter out redundant frames that are not relevant



to the video category. In the C-ATT method, content-level
alignment of the video is achieved using the similarity between
positive samples, so that background noise information can be
filtered out and subject features relevant to the category can
be emphasized. In the CM-ATT method, semantic information
is leveraged to guide the selection of key visual information,
enabling the selection of semantically relevant visual frames.
Fusion of three-level weighting of visual frames based on
multi-channel information to generate final keyframe selection
weights. Attentive weights are used to select key visual frames
to learn the final predicted class of the video.

Experiments are conducted on the MSR-VTT [10] and
ActivityNet Captions [11] datasets in terms of performance
comparison, ablation study of the key components of MCA-
WF, and case studies for the effectiveness of three-level atten-
tive weighting of video frames. The results verify that MCA-
WF can improve the performance of different backbones,
extract key visual information from the video and reduce the
difference in the distribution of heterogeneous features. To
summarize, this paper includes three main contributions:

• A general multimodal video classification algorithm
MCA-WF based on a multi-channel attentive weight-
ing mechanism of visual frames is proposed, which
can effectively remove category-irrelevant information,
achieve adaptive visual keyframe selection, and improve
the accuracy of video classification.

• The contrastive attention weighting (C-ATT) method is
proposed, which uses the similarity of features between
positive samples to learn invariant representations with
class-level information and identify key frames.

• McAW module can focus on the key information between
different modalities. At the same time, it can learn
uniform representations and reduce differences in the
distribution of different modalities in the feature space.

II. RELATED WORK

With the advancement of deep learning [12]–[17], video
analysis techniques are increasingly being used in the fields
of recommendation [18], [19], computer vision [20]–[27],
etc. As video is a natural multimodal information source,
multimodal learning [28]–[33] is essential for its analysis.
Existing studies on video classification can be divided into
two categories: methods based on single-modal information
and methods based on multi-modal information.

A. Single-modal Information based Methods

Conventional video classification algorithms typically rely
on single-modal visual information for video classification.
The research content of methods based on single-modal in-
formation is the recognition of human behavior in simple
scenes. There are two tasks. Behavior localization and be-
havior recognition. Behavior localization is the process of
locating a video clip or frame with a target behaviour [34],
[35]. Behavior recognition is to classify the behaviors in video
clips [36], [37]. The prediction results are strongly affected

by the redundant information of video frames in complex
scenes. Therefore, complex scene video classification is more
challenging than the original problem. With the rise of deep
learning, researchers have started to use CNNs for video
problems. The pioneering work DeepVideo [38] proposed to
use a single 2D CNN model independently on each video
frame and investigated several temporal connectivity patterns
to learn spatio-temporal features for video action recognition,
such as late fusion, early fusion and slow fusion.

B. Multi-modal Information based Methods

Existing multi-modal information methods use Efficientnet
[39] and Nextvlad [40] to extract video, title and audio features
respectively, concatenate multimodal features and use a neural
network to learn fused features. Two-stream network [41] is
a pioneering work in video understanding, which included
a spatial stream and a temporal stream. Long et al. [42]
proposed a multimodal keyless attention fusion for video
classification. Neural machine translation [43] pointed out
the video and audio features for video classification. At the
same time, they introduced a context gating layer, an effective
nonlinear unit called context gating, which was used to model
the interdependence between network activations and showed
stronger classification performance than LSTM [44] and GRU
[3]. RNN is tried multimodal fusion and natural language
processing technologies, such as attention mechanism [45],
and it proposed a method of deep multimodal learning (DML),
which combines visual and audio information at the video
frame level. The DML model was tested in the Kaggle video
classification contest. It shows good classification performance
on large video datasets. However, these multimodal video
classification algorithms lack key frame selection and can not
filter out low-quality frames.

III. METHOD

In this section, we will detail the multimodal feature extraction
(MFE) module, the multi-channel attentive weighting of visual
frames (McAW) module, the visual frame selection (VFS)
module, and the multimodal fusion network (MFN) module in
MCA-WF and strategies to train the framework. The overview
of MCA-WF is shown in Figure 2.

A. MFE Module for Visual and Semantic Features Extraction

Given a video dataset D = {(Vi,Si)|i = 1, ..., N}, Vi and
Si represent a video sample and the corresponding semantic
information, respectively, where Vi = {fj | j = 1, . . . , n}, fj
represents the frame of the input video, n is the number of
frames, and V+

i is a positive sample of Vi. This semantic
information can be audio or text descriptions. MFE module
utilizes two encoders ξv(·; θv) and ξs(·; θs) to extract features
from visual and semantic information respectively, where θv
and θs denote the weights of visual and semantic encoders.
The specific definitions are as follows:

Fvi = ξv(Vi; θv) (1)

F+
vi = ξv(V+

i ; θv) (2)



Fig. 2. Illustration of the proposed MCA-WF. Input the video frames information and the semantic information of the video, while finding a positive sample
for this video based on the same label. The McAW module fuses the three levels of attentive weighting to obtain the fused weights of the visual frames.
And it directs the VFS module to obtain the key frame of the video. Finally, the visual key frame information and text information are fused to the MFN
module to predict the video label C̄.

Fsi = ξs(Si; θs) (3)
This can extract the visual representation Fvi and F+

vi with
motion information from the original video Vi and the positive
sample of the video V+

i , as well as the semantic representation
Fsi = {sj | j = 1, . . . , n} of the original video with semantic
information Si. Among them, Fvi

= {vj | j = 1, . . . , n} and
F+
vi =

{
v+
j | j = 1, . . . , n

}
, where vj and v+

j represent the
motion information of each frame in the video.

B. McAW Module for Visual Frames Weighting

In order to filter the noise and mine the key informa-
tion of the video, the McAW module obtains the attentive
weights from the three channels, including cross-modal atten-
tion weighting (CM-ATT), visual self-attention weighting (V-
ATT), and contrastive attention weighting (C-ATT). The final
weights of the visual frames are obtained by performing the
fused weights (FW) to fuse the weights of the three parts of
the video frames in order to select the key frames.

1) C-ATT for Content Level Alignment of the Video: For
each video, a positive video sample is selected based on
the principle of similarity between the features of video
frames with the same label. The C-ATT is used to extract key
information from the video and reduce intra-class differences
using a similarity constraint between the positive sample video
frames and the original video frames.

In C-ATT, positive sample visual frame features F+
vi inputs

CV-CG to generate context vector cc. Then cc and Fvi input
the contrastive frame weighting (CFW) to get wc. The con-
trastive attention weight wc = {wc,fi | i = 1, . . . , n} of the
positive sample to the original sample.

To further constrain the similarity of two videos that are
positive samples of each other, the Lml loss is also used
to constrain the corresponding video frames. The specific
definitions are as follows:

cc = Gc

(
F+
vi

)
(4)

wc = Softmax (θv (Fvi
, cc)) (5)

Lml = M
(
Fvi ,F+

vi

)
(6)

where Gc(·) represents the context vector generator. θv(·, ·)
represents fusion operation and linear mapping operation.
M(·, ·) represents linear mapping operation and the mean
square error (MSE) function.

2) CM-ATT for Semantically Guided Visual Frames Selec-
tion: Semantic information is used to guide the weighting
of visual frames, allowing semantically relevant visual frames
and also initially reducing heterogeneity between modalities.

In CM-ATT, semantic information Fsi inputs CS-CG to gen-
erate context vector cs. Then cs and Fvi input the cross-modal
frame weighting (CMFW) to obtain ws. The cross-modal
attention weight of each frame ws = {ws,fi | i = 1, . . . , n}
in the video is obtained. n indicates the number of frames in
the video. The specific definitions are as follows:

cs = Gs (δ (Fsi)) (7)

ws = Softmax (θs (Fvi , ϕ (cs)))) (8)

where δ(·) is used to learn the deep semantic feature Fsd.
And then Fsd inputs to Gs(·). CS-CG consists of δ(·) and
Gs(·) operation. ϕ(·) includes linear mapping and dimension
expansion operations. θs(·, ·) includes weighting operation.

3) V-ATT for Reducing the Redundancy of Visual Frames:
The video frames are weighted by a self-attention visual
weighting module that reduces redundant information in the
continuous video frames and extracts key information. It can
be used to further guide the weighting of the video frames.

In V-ATT, the video frame information Fvi of the original
video inputs V-CG to generate context vector cv . Then cv and
Fvi input self-attention frame weighting (SAFW) to obtain wv .
The weight wv of each frame wv = {wv,fi | i = 1, . . . , n} in



the video is obtained. n indicates the number of frames in the
video. The specific definitions are as follows:

cv = Gv (Fvi) (9)

wv = Softmax (θv (cv,Fvi)) (10)

where, Gv(·) refers to the weighted average value of the visual
frame features Fvi through the context vector generator (V-
CG). The cv represents the features of the whole video frame.

4) FW for Multi-channel Weights Fusion of the Visual
Frames : Fused the weights obtained from the three-level
visual attention weighting modules. To better select the key
information frames in the video, it can obtain the weights of
the video frames from multiple perspectives.

In FW, the weights of multi-channel attention visual frames
are fused. The input is the video frame weights ws, wv and wc

calculated by CM-ATT, V-ATT and C-ATT respectively. The
output w = {wfi | i = 1, . . . , n} is the muti-channel attention
video frame weight. The specific definitions are as follows:

w = Softmax(ws + wc + wv) (11)

C. VFS Module for Key Visual Frame Selection

In VFS module, the McAW module achieves potential
alignment of semantic information on the content of visual
information based on CM-ATT, filters redundant information
between consecutive frames based on V-ATT, and reduces
visual background noise based on C-ATT, respectively. Finally,
the McAW achieves the constraint of key frames from different
perspectives. Thus, this module can notice the key information
in the classification after fusing the weights of the three parts
visual frame weighting. Effectively improve the complemen-
tarity and integration of information between modalities.

The VFS module is used to select the key frame in the video.
The multi-channel attention weights w = {wfi | i = 1, . . . , n}
and video frames Fvi as input to the consistency ranking (CR)
module. The output is the key frame Fki in the video. The
specific definitions are as follows:

F, wk = Ψ(Fvi , w) (12)

Fki
= F ∗ wk (13)

where Ψ(·, ·) selects the top k weights of the video frames
and obtains the original visual frames corresponding to the
top k video frame weights as F in the video. The weight
is weighted by the attention of multiple perspectives wk =
{wfi | i = 1, . . . , k}, and finally take the dot product of the
two to get the key frames in the video.

D. MFN Module for Multimodal Feature Fusion

Joint image-text representation learning methods mostly use
dual-stream architectures to align image representations and
text representations at the global level by contrast learning
methods. However, it is easy to ignore fine-grained information
to achieve effective alignment [46] and difficult to learn a
representation that captures modality-invariant instance infor-
mation corresponding to coherent natural language concepts.

Therefore, in this paper, we use a single-stream Transformer
architecture to achieve fine-grained alignment of visual and
textual representations based on multi-headed attention and
generate multimodal fusion representations.

The MFN module consists of a series of stacked Trans-
former blocks, including a multi-head self-attention layer
(MSA) and MLP layer, which learn inter-modal attention en-
coded information based on a pre-trained multimodal network
to fuse visual and semantic representations and generate mul-
timodal fusion features. The specific formulas are as follows:

z0 = [Fki ;Fs] (14)

êd = MSA
(
LN

(
ed−1

))
+ ed−1, d = 1 . . . D (15)

ed = MLP
(
LN

(
êd
))

+ êd, d = 1 . . . D (16)

p = MLP
(
eD

)
(17)

where the Transformer layer number D is 12. In this mod-
ule, the text embedding Fs and the multi-channel attentive
weighting visual keyframe features Fki are concatenated into
a multimodal fusion sequence e0. Fusion features êd are gen-
erated by MSA through implicit alignment of heterogeneous
modal features and mapped to higher dimensional spaces to
extract high-level abstract information. The prediction result p
is generated by an MLP containing a two-layer linear mapping
and an activation function Relu(·), and the classification loss
in the single label classification task is computed by the
CrossEntropy (CE) loss Lce with the true label.

E. Training Strategy of MCA-WF

The MCA-WF adopts a single-stage training mode to com-
plete the migration fine-tuning of downstream tasks of the
model through training. The model is updated by minimizing
the weighted sum of predicted loss Lce and MSE loss Lml.
The specific formula of final loss is:

Lce = CE(p, p′) (18)

Lfinal = Lce + Lml (19)

where CE is the CrossEntropy function. p and p′ are the
predictions and ground truth of the label. Lml is utilized
according to (6).

IV. EXPERIMENTS

A. Experiment Settings

1) Datasets: To demonstrate the generality of MCA-WF,
we use two benchmarking datasets MSR-VTT and ActivityNet
Captions that are commonly used in video classification for
experiments. Their statistics are shown in Table I.

TABLE I
STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

Datasets #Class #Sentences #Training #Testing
MSR-VTT 20 200,000 7,010 2,990

ActivityNet Captions 200 100,000 10,009 4,515



TABLE II
PERFORMANCE COMPARISON OF ALGORITHMS. METRICS ARE TOP-1/TOP-5 ACCURARY (ACC). THE BEST PERFORMANCE IS MARKED IN BOLD.

Method Modality MSR-VTT ActivityNet Captions
Acc@1% Acc@5% Acc@1% Acc@5%

ViT (video) V 53.7 82.9 81.9 94.1
GRU V 49.5 79.2 78.6 93.8

MCA-WF(GRU) V 53.8 83.8 82.3 94.8
GRU V+S 53.1 81.8 80.3 94.0

MCA-WF(GRU) V+S 56.4 84.2 83.9 95.3
ViLT V+S 55.4 83.9 82.7 95.2

MCA-WF(ViLT) V+S 58.8 85.3 85.6 96.5

• MSR-VTT dataset: contains 10,000 unique YouTube
video clips. Each of them is annotated with 20 different
text captions, so there are 200,000 video caption pairs in
total. We split the dataset into 7,010 and 2,990 videos for
training and testing, respectively.

• ActivityNet Captions dataset: contains 20,000 subtitled
videos, each with a unique start and end time, totaling
849 hours of video, with 100,000 segments. On average,
each 20,000 video contains 3.65 temporally localized
sentences, for a total of 100,000 sentences. Since some
videos are not officially labeled, the labeled sample data
is divided into 10,009 and 4,515 videos for training and
testing, respectively.

2) Evaluation Criteria: In the experiments on the MSR-
VTT and ActivityNet Captions datasets, we use Accuracy
to evaluate the model prediction performance in single-label
classification, the accurary formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(20)

where TP is the number of positive samples, FP is the
number of negative samples, TN is the number of positive
samples and FN is the number of negative samples. We
followed conventional measures of Top-1 and -5 accuracies
to evaluate the classification performance. To alleviate the
problem of randomness, we repeat the evaluation process five
times and report the average value.

3) Implementation Details: To verify the applicability of
MCA-WF, we investigate the performance of MCA-WF on
three visual backbones ViLT [2] and GRU [3], denoted as
MCA-WF (ViLT) and MCA-WF (GRU). The feature dimen-
sion is set to 768 in the experiment. This follows the feature
dimension setting of the pre-trained large model ViLT. The
batch size was selected from {32, 64, 128}. We used the Adam
optimizer with a learning rate chosen from 1e-6 to 1e-3. The
decay rate of the learning rate parameter was chosen from
0.1 and 0.5 with a decay interval of 4 epochs. We conduct
experiments on NVIDIA Tesla V100 and a ViLT-based model
takes 5∼8 hours to train.

We used the pre-trained S3D network to extract visual
features with a feature dimension of 1024 from two multi-
modal video datasets: MSR-VTT and ActivityNet Captions. To
extract text features from sentence descriptions in MSR-VTT,
we used the Google Cloud Speech to Text API network with

a dimension of 768 and a sequence length of 73 [?]. For both
datasets, we extracted 30 visual frames with the same interval.
For the ActivityNet Captions dataset, we used the VGGish
network, pre-trained on the YouTube-8M dataset, to extract
audio features with a dimension of 128 from the semantics
[47]. We also extracted 60 visual frames and 60 audio frames
from the video using the same interval.

B. Performance Comparison

In this section, we show the effect of the MCA-WF on
two multimodal datasets and compare the Vision Transformer
(ViT) [1], Vision and Language Transformer (ViLT) [2] and
GRU models as SOTAs experiments. On this basis, our pro-
posed multimodal video classification module MCA-WF is
merged. Our modules are also added to the GRU as MCA-
WF(GRU) and added to ViLT as MCA-WF (ViLT). The
following observations can be drawn from Table II.

• Our study shows that video classification performance
improves when multimodal information is fused, com-
pared to classification based on single-modal visual fea-
tures. This suggests that there is complementary semantic
information between different modes when feature fusion
is used. Moreover, the fusion of semantic and visual
information yields the most significant improvement in
classification accuracy.

• Using a multi-channel attentive weighting of visual
frames leads to improved multimodal video classifica-
tion. This method, which includes CM-ATT, V-ATT,
and C-ATT, enables the selection of key information
frames from various perspectives. Specifically, CM-ATT
combines semantic and visual information for collab-
orative learning, V-ATT reduces redundant information
and filters out visual frame noise, and C-ATT eliminates
background information and emphasizes body-related in-
formation for the given category.

• The overall effect of the pre-trained large model ViLT
on the experimental dataset is higher than that of the
backbone GRU network, indicating the superiority of
the pre-trained large model in downstream tasks. At the
same time, the MFN module is able to further reduce
the deviation that is caused by the uneven distribution
between the different modalities.



TABLE III
ABLATION STUDY OF MCA-WF WITH VILT BACKBONE IN TERMS OF
TOP-1 AND TOP-5 ACCURACY (ACC). (Vattv + S),(Vatts + S) AND
(Vattc + S) DENOTE THE VISUAL FUSION SEMANTIC INFORMATION

AFTER THE V-ATT, THE CM-ATT, AND THE C-ATT METHODS,
RESPECTIVELY. THE BEST PERFORMANCE IS MARKED IN BOLD.

Method MSR-VTT ActivityNet Captions
Acc@1% Acc@5% Acc@1% Acc@5%

V 51.3 81.6 82.0 94.1
V + S 55.4 83.9 82.7 95.2

Vatts + S 57.5 84.1 85.1 96.3
Vattv + S 57.9 84.2 85.0 96.2
Vattc + S 57.6 84.3 85.1 96.4

Vatts+attv + S 58.0 84.7 85.4 96.3
Vatts+attc + S 58.1 84.5 85.2 96.3
Vattv+attc + S 58.1 84.6 85.3 96.4

Vatts+attv+attc + S 58.8 85.3 85.6 96.5

• After applying the MCA-WF multimodal video classi-
fication algorithm to different models (GRU or ViLT),
the video classification performance is significantly im-
proved, demonstrating its model-independent properties.

C. Ablation Study

In this section, we further studied the working mechanisms
of different modules of MCA-WF, as shown in Table III. We
chose ViLT as the base network. The following findings could
be observed:

• Use multimodal information fusion (V+S) outperforms
single-modal visual features (V). This is due to the
consistency between multimodal information and the
complementarity between fine-grained modalities.

• The performance of the model is improved by all three
parts of the visual frame weighting. (Vatts + S) achieves
a potential alignment between the visual and the se-
mantic information of the video. (Vattv + S) eliminates
redundant information from the video frames. The (Vattc

+ S) module achieves content alignment between video
feature frames and category-related content, highlighting
the subject information.

• Pairwise combination of the weighting mechanism of the
three perspectives (Vatts+attv + S), (Vattv+attv + S) and
(Vatts+attc + S) can further improve the performance
of the video classification. The (Vatts+attv+attc + S)
module achieves the best performance on two realistic
multimodal video datasets. It shows that the attention
module of the three parts with different perspectives can
effectively constrain the key frames of the video.

D. In-depth Analysis

1) Evaluation on Frame Weighting for Visual Modal: The
CM-ATT, V-ATT and C-ATT are the main modules proposed
in this paper. On the one hand, the modal is different; on
the other hand, the visual frames are weighted from different
perspectives. Therefore, we further analyze the effectiveness
of the three video frame weighting methods without using

TABLE IV
THE PERFORMANCE COMPARISON OF THE THREE PARTS OF ATTENTION

FRAME WEIGHTING IN THE VISUAL MODAL IN TERMS OF TOP-1 AND
TOP-5 ACCURACY (ACC). EXPERIMENTS ARE VALIDATED ON THE BASE

MODEL VILT. THE BEST PERFORMANCE IS MARKED IN BOLD.

Method MSR-VTT ActivityNet Captions
Acc@1% Acc@5% Acc@1% Acc@5%

V 51.3 81.6 82.0 94.1
Vattv 53.6 82.7 83.5 95.8
Vatts 53.9 83.0 83.6 95.7
Vattc 53.5 82.6 83.9 96.0

TABLE V
COMPARE THE PERFORMANCE OF SEMANTIC INFORMATION, VIDEO

INFORMATION, AND MULTIMODAL INFORMATION IN VIDEO
CLASSIFICATION IN TERMS OF TOP-1 AND TOP-5 ACCURACY (ACC).

V: VISUAL INFORMATION. S: SEMANTIC INFORMATION. THE BEST
PERFORMANCE IN DIFFERENT MODELS IS MARKED IN BOLD.

Backbone Modality MSR-VTT ActivityNet Captions
Acc@1% Acc@5% Acc@1% Acc@5%

GRU
V 49.5 79.2 78.6 93.8
S 52.5 81.2 22.5 42.5

V+S 53.1 81.8 80.3 94.0

ViLT
V 51.3 81.6 82.0 94.1
S 53.0 81.5 24.8 45.8

V+S 55.4 83.9 82.7 95.2

semantic information. Experimental results show that all three
parts of attentional weighting can constrain video keyframes.
The result is shown in Table IV.

2) Evaluation on Different Modality for Video Classification
Performance: Different modality of the video has different
impacts on the video classification performance. Experiments
are conducted on GRU and ViLT backbones. The result is
shown in Table V. The following findings could be observed:

• The experiments show that the classification effect of
multimodal video fusion is higher than single-mode video
in both ViLT and GRU models. Illustrates the comple-
mentarity and consistency of two types of data features
between different modal information.

• In the MSR-VTT dataset, semantic information is a
textual feature, and the classification effect of semantic
information is better than that of visual information.
This indicates the importance of higher-order seman-
tic information. However, in the ActivityNet Captions
dataset, the semantic information is not as good as the
visual information for the classification of the videos.
Because it uses audio features, audio features come
with some noise information. But it can still have
some classification effects. The higher-order correlation
information between vision and semantics can be better
extracted by combining the two.

E. Case Studies

1) Quality Analysis of Representation Learning: This sec-
tion analyses the video classification MCA-WF algorithm
according to the visual and semantic representation distribution
at different stages. Figure 3 shows the results. (a) shows



Fig. 3. Visualization of visual and semantic information of 20 randomly selected test samples in MCA-WF module. ”Orange” represents semantic information
and ”Green” represents visual information. (a) is the distribution of visual and semantic shallow representations obtained by the feature extraction (MFE)
module; (b) is the distribution of visual and semantic representations after the multi-channel attentive frame weighting (McAW) mechanism; (c) represents
visual and semantic distribution after the multimodal fusion network (MFN) module.

Fig. 4. Illustration of the results of the multi-channel attentive visual frame
weighting (McAW) module and the visual frame selection (VFS) module for
selecting key visual frames on the GRU model.

the shallow representations obtained in the MFE module; (b)
shows the features of multi-channel attentive representations
extracted in the McAW module; (c) shows multimodal inter-
active features extracted in the MFN module.

From Figure 3, it can be seen that the representation
distribution of different modalities of visual and semantic
information has obvious changes in the embedding space of
t-SNE [48]. The distribution of visual and semantic represen-
tations of multimodal video is slowly converging.

• In Figure 3(a), the distribution of visual and semantic
superficial representations of the same video shows an
obvious distinction.

• In Figure 3(b), the distribution of visual and semantic
information in feature space tends to be close, indicating
that the attentional mechanism can achieve frame selec-
tion with deep semantics and key frame extraction.

• In Figure 3(c), the representations of the two modalities
gradually become consistent, indicating that the MFN
module can alleviate the problem of inconsistent distri-
bution of heterogeneous features.

2) The Visual Verification of Frame-weighted Selection
Performance: To verify the impact of the module McAW
module and the VFS module on experimental performance, the
corresponding case studies are performed on the GRU model.
As shown in Figure 4, the first line of the video clip represents
a moderately spaced selection of five visual frames. The
video’s label is Pet and the corresponding text description is ’a
cat watches a boxing match on television and actively swipes
with the boxers’. As the results show, the original GRU model
focuses more on the subject of ’television’, suggesting that the
context interferes with the model’s focus on the characteristics
of the subject. In the ’GRU+McAW’ method, the three-level
attentive frames fusion gives different weights to different
visual frames and reduces the influence of the background.
The McAW allows the model to focus on the central part
’cat’ of the video, removing background subjects ’television’.
The McAW module enhances visual representation learning.
In the VFS module, high-quality frames are selected and the
redundant information is filtered out. It is illustrated that the
two-part module can further extract key information from the
video while filtering out redundant information from the video.

V. CONCLUSION

This paper proposes a multimodal video classification
method based on multi-channel attentive weighting of video
frames (MCA-WF). MCA-WF uses a multi-granularity and
multi-channel frame weighting mechanism to filter visual
noise and redundant information in the visual modal. This
enhances the complementarity and integration ability of key
information between different modals and can pay attention to
the key information in the classification.

The MCA-WF algorithm effectively mitigates the comple-
mentarity of information between different modalities, extracts
the key semantic information of each modality, and learns
the unified representation. It can effectively constrain the key
frames in the video to improve the accuracy of the video
classification. In the next step, an attempt will be made to
further establish an efficient key frame selection mechanism.
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