Unsupervised Contrastive Masking for Visual Haze Classification
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ABSTRACT

Haze classification has gained much attention recently as a cost-
effective solution for air quality monitoring. Different from conven-
tional image classification tasks, it requires the classifier to capture
the haze patterns of different severity degrees. Existing efforts typ-
ically focus on the extraction of effective haze features, such as
the dark channel and deep features. However, it is observed that
the light-haze images are often mis-classified due to the presence
of diverse background scenes. To address this issue, this paper
presents an unsupervised contrastive masking (UCM) algorithm to
segment the haze regions without any supervision, and develops a
dual-channel model-agnostic framework, termed magnifier neural
network (MagNet), to effectively use the segmented haze regions to
enhance the learning of haze features by conventional deep learning
models. Specifically, MagNet employs the haze regions to provide
the pixel- and feature-level visual information via three strategies,
including Input Augmentation, Network Constraint, and Feature
Enhancement, which work as a soft-attention regularizer to allevi-
ates the trade-off between capturing the global scene information
and the local information in the haze regions. Experiments were
conducted on two datasets in terms of performance comparison,
parameter estimation, ablation studies, and case studies, and the
results verified that UCM can accurately and rapidly segment the
haze regions, and the proposed three strategies of MagNet consis-
tently improve the performance of the state-of-the-art deep learning
backbones.
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1 INTRODUCTION

Haze classification [5, 25, 29] is an emerging Al-powered appli-
cation in the computer version domain, which has been widely
used in air quality estimation [11, 19] and visibility estimation in
autonomous driving [7, 8]. In contrast to conventional image classi-
fication tasks, the classification of haze images aims to estimate the
severity levels of the visual haze, instead of distinguishing between
different objects. Existing studies usually look into extracting effec-
tive haze features [2, 16, 22, 28]. However, it has been observed that
even the state-of-the-art convolutional neural networks (CNNs)
[16, 27, 30] encounter issues in distinguishing the haze classes in
light haze settings, caused by the diversity of background scenes.
Therefore, new solutions are needed to alleviate the influence of
background objects when learning the visual features of haze.

Existing methods for haze classification lie in three main cat-
egories, including threshold-based models, handcrafted-feature-
based classifiers, and deep learning algorithms. The threshold-based
models develop mathematical equations to compute the values of
haze degrees directly from haze images, such as color [3, 9, 18] and
dark channel prior [7, 14]. This line of research heavily depends
on observation data and the computation may be cumbersome,
leading to an unstable performance to classifying data from differ-
ent domains. The handcrafted-feature-based classifiers [24, 29, 31]
usually focus on extracting effective visual features and use the
classifiers such as SVM to classify the haze classes. Such data-driven
approach alleviates introducing manual biases, but it introduces
the need of feature engineering with high computational cost for
feature extraction [2, 22, 28]. Finally, the deep learning algorithms
use CNNs [32, 33] with network ensembles [22, 27], multi-branch
training [17, 28], and pre-training [2, 5], to classify haze images in
an end-to-end manner, which typically achieve much better perfor-
mance than the threshold-based and the handcrafted-feature-based
methods. However, it has been observed that these models usually
perform worse on the classification of light haze images, due to
the fact that the background scene objects work as spurious causal
features in classification [16, 27, 30] and the lack of integration of
corresponding features [6, 12, 20].

To address the aforementioned problems, this paper presents an
unsupervised contrastive masking (UCM) algorithm to segment the
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Figure 1: Illustration to UCM-MagNet for haze classification.
In addition to the task channel I — E;, UCM-MagNet extracts
visual features from the haze portion segmented by the UCM
module I - I; — Ej. The final feature E is obtained by a
fusion of the features from both channels for haze classifica-
tionE; ®E, =Ef — C.

haze regions in a cost-effective manner, and develops a dual-channel
model-agnostic framework, termed magnifier neural network (Mag-
Net), to integrate the segmented haze regions into conventional
CNNss to improve their classification performance. Figure 1 shows
the entire framework, termed UCM-MagNet. Specifically, UCM
considers the knowledge prior of haze colors and employs a con-
trastive masking method to distinguish the haze regions from the
background scenes; MagNet is a dual-channel network that uses
the extracted haze regions as a magnifier to enhance the learning
of haze features in terms of the pixel- and feature-level visual infor-
mation, achieved by input augmentation, network constraint, and
feature enhancement. The Input Augmentation module serves as
a magnifier that complement the input image with the magnified
haze regions, which makes the model to better capture the features
of the haze information; the Network Constraint module works as
a soft-attention regularizer [13, 26] to the feature encoder in the
task channel by aligning its intermediate visual features to the haze
features produced by the encoder in the magnifier channel, and this
guides the encoder in the task channel to pay more attention to the
haze regions; and the Feature Enhancement module alleviates the
trade-off between capturing the global and local information in the
haze images by fusing the features learned from both the task and
magnifier channels.

Experiments were conducted on the Hazel-level [14] and the
Haze-wild datasets, where Hazel-level dataset contains 3024 images
in 9 classes, and Haze-wild dataset contains 100,000 images in 10
classes. Notebly, the Haze-wild dataset is created by us consider-
ing the shortage of publicly-accessible large-scale benchmarking
datasets in the literature, and it will be release to the community.
The performance of UCM-MagNet is evaluated with performance
comparison, parameter estimation, ablation studies, and the case
studies. The results show that UCM-MagNet may achieve consistent
performance gains as compared with the CNN backbones.

To summarize, this paper includes three main contributions:
(1) An unsupervised haze segmentation algorithm, termed UCM,
is proposed, which does not require any supervision and can
accurately segment the haze regions in a fast speed and with
mild parameter settings.

(2) A model-agnostic framework, termed MagNet, is proposed to
effectively integrate UCM into conventional CNNs and can ef-
fectively use the haze segments for performance improvement.

(3) A large-scale dataset has been created for haze classification,
named Haze-Wild. As compared with existing datasets, Haze-
wild contains a wide range of outdoor scenes and employs the
state-of-the-art depth estimation technique to create the haze.
It will be release to the research community.

2 RELATED WORKS

Existing studies on haze classification can be categorized into the
three types according to their different methods in haze feature
extraction and classification, as illustrated below.

2.1 Threshold-based Methods

Threshold-based methods need to model the haze functions by
theory or observation and then substitute statistical or image pro-
cessing information to determine the class according to thresholds
[1]. The information includes the lowest/highest pixel value of the
original RGB image [9, 18], dark channel priors [7], depth map [14],
transmitted image [3], etc., through logarithm, division, and pooling
calculation parameters for operations such as transformation [14].
These methods are limited by the construction of specific functions
and have poor scalability.

2.2 Classifiers with Handcrafted Features

Manually extracting features from images through feature engi-
neering and training the model with machine learning methods.
Such methods usually manually extract color histograms [24, 29],
color model parameters [31], regions of interest (ROI) and power
spectral slopes [16] from raw RGB images, depth maps, dark chan-
nel maps [30] as features, then adapting a regression model such as
a support vector regression (SVR) to predict the degree of haze [16]
and find the corresponding class from the index, or directly classify
images by multiple or cascaded support vector machine (SVM) [30].
These methods avoid the construction of specific functions, but the
selection of features limits the precision of model classification.

2.3 Deep Learning Methods

Deep learning is an end-to-end approach, inputting images and
the model would learn to extract features and output classification
results autonomously. Since it is hard to train models from complete
haze images, related works improve the model training framework:
model ensemble methods [22, 27] achieve feature enhancement by
training multiple basic models and adapting a meta-learner to learn
to fusion basic models’ output; the multi-branch method [17, 28]
proposes multiple classifiers in different training branches to get
better predictions. There are also ways of pre-training [2, 5], multi-
task training [32, 33] and feature fusion [15, 21]. The end-to-end
method does not require feature engineering, however, most of the
current works lack constraints on the background problem of haze
classification.

In summary, end-to-end methods have made a progress currently,
but still require a lot of computing time and computation for model
ensembling or pre-training, and there is lacking methods to handle
the noise from the background of haze images.
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Figure 2: The illustration of UCM-MagNet unsupervised segments the haze portion of the original image to assist in haze
classification. In forward propagation, Image Encoder ¢;(-) extracts the visual features from the image I and the haze region I
segmented by the UCM module for haze classification. In addition to classification loss £, KL-divergence L;, is also intro-
duced to enhance the constraints on the feature extraction process for image I. With the pixel-level information magnification
and the feature-level information complementary, the magnifier channel can enable the task channel to focus more on the
haze partition and strengthen its haze classification performance at multiple levels and perspectives

3 PROBLEM FORMULATION

This paper investigates the use of haze segments to enhance visual
haze classification. As shown in Figure 2, compared with the conven-
tional setting, Magnifier Channel is added to obtain the haze region
feature. Given a dataset including haze images 7 = {I; [i=1,..,N }
and corresponding labels of J classes C = {cjli=1,...]}. Two
image encoders &s(-) and ¢;(+) are trained to learn the haze region
feature and the original image feature, denoted as E;, and E;, re-
spectively. And the fused feature E is then mapped to prediction
label. Finally, the Cross Entropy loss function about prediction label
C and ground-truth C is minimized to modify image encoder, i.e.,
minimizing CE(C, C ). Meanwhile, we try to make the encoder of
the task channel learn from the encoder of the magnifier channel
by minimizing the KL-divergence KL(E; || Ef;).
As shown in Ficture 2, there are three main processes:

o Haze filter: UCM uses three small modules to obtain contrast
map I, denoising map I, and haze filter(segment) map I¢(Is)
inorder,ie. I+ Ic = Ige = I¢(Is).

o Feature extraction: MagNet uses two encoder to extract fea-
tures independently in dual channels: I — E; in task channel
and I — I¢(Is) — Ej in magnifier channel.

e Haze image label prediction: The final prediction on haze
classes C is obtained by a fused feature obtained from both the

task and magnifier channels, i.e, E; ® Ej, = Ef - C.
Conventional haze detection algorithms typically need to design

structure NV, and use the dataset 7~ with haze region boundary Br
for training, i.e. By = N(7") , which is a challenge in itself. This
motivates this study to propose the UCM module, which adaptively
extracts haze region for any dataset without a training process.
Subsequently, the dual-channel design of MagNet makes feature
fusion possible to make the model pay more attention to haze areas.
The fusion feature not only reduces the interference of irrelevant
background, but also makes up for the lack of feature information
of haze region.

4 TECHNIQUE

4.1 Framework Overview

As shown in Figure 2, UCM-MagNet framework has two channels:
Task Channel and Magnifier Channel. These channels can be di-
vided into two main modules: UCM module and MagNet module.
UCM module generates haze region image which will be used as the
input data for Magnifier channel in MagNet. MagNet module can
use a variety of methods to classify with enlarged image features
and original features.

4.2 UCM Module

As shown in the Figure 3, the UCM algorithm contains three main
sub-modules: Contrast Module, Denoised Module, and Mask Mod-
ule. UCM can enlarge the haze region of image I and get the haze
region image I, which contains the haze filter map Iy the haze
segment map I, both of which can be used as the haze region.

4.2.1 Contrast Map Module. This module uses the information
from the input image I to obtain a preliminary comparison map
containing the haze region I.. There are two main procedures to
use these information in Contrast module.

e Calculate the Dark/Bright Channel Images. This procedure
is used to count the pixel information in the image I. Image I is
processed by channel filter F, and F; to get the corresponding
channel map Iy, I;. The bright channel filter F;, and the dark
channel filter F; use the equations below:

I(y)), 1)

F =
b0 = N e (R

F = i i
400 = B e REm)

(), ()

where x is one of the pixel in this image, I°(-) denotes the ¢
channel of image I, Q(x) means the neighboring pixels of x.

Calculate the Contrast Map. This procedure uses the statistical
information in the previous step to obtain the comparison map



I.. We subtract I, and I; to get a preliminary comparison map
vc. After that we get the comparison map I. by Eqs. 3 and 4.
_| 0 if vc < Vthreshold
le(x) = { 255  otherwise ®)

255, if X > Othreshold OF IME eay < gray
x, otherwise

I.(x) = { . @
where vypreshold = 3 (mean(ve) + median(vc)), ve = Iy (x) — Iz (x),
iMgean = 5 Dee(rc,py IS) and gray = 0.3I% +0.331 +0.45I5.

4.2.2 Denoised Map Module. The input to this module is the com-
parison map I..In this module I, will be filtered out of scattered
haze areas. We set a filter F,, to select the most frequent pixel value
in a range as the pixel value of each pixel point in this range. So
we can get the denoised map I, by using Egs. 5.

Tge(x) = VyeQ(x)Fde(y)a (5)

where x is a pixel. Fy, denotes the method of denoising as we
described.

4.2.3 Haze Mask Module. This module use the position informa-
tion of the denoised map I, to get the haze filter map I and haze
segment map I;. There are three main procedures in Mask module.

e Calculate the Mask matrix. The matrix Mask stores the posi-
tion information of the haze region in the denoised map D. We
set a filter F,, to get this information. Filter F,, is defined as

F(x) = I , 6
(%) yrergé) de(y) (6)

where x is a pixel. Now we can get the Mask matrix by the
following Eqgs. 7.

1 ifFp(x) < 255

Mask(x) = { 0 otherwise

7

o Get the haze filter map. In the previous step we obtained the
matrix Mask. We can use it to generate the haze filter map I by
the following Eqs. 8.

Ir(x) = I(x) X Mask(x). (8)

e Get the haze segment map. In the filter map I, if a pixel is in

the haze region, its value must be 0. We can get the bound values
of the haze region Bound in the filter map Iy by the Eqgs. 9.

(x)

Bound = [ min (x),

, , 9
g (v) I(;r};\))<>0(y)] )

max ., min
I(x,y)>0 I(x,y)>0
where x, y is the position of a pixle. The haze segment map I
can be obtaioned by using Bound to crop the Image 1.

4.3 MagNet Module

Too much or too little background information will have an impact
on the haze classification results. To solve this issue, the MagNet
module receives inputs from both channels and processes them
using different methods. As shown in the Figure 4, there are three
approaches that are used to fuse the haze region image I, extracted
by UCM module and original image I to achieve feature-level infor-
mation complementary, including Input Augmentation, Network
Constraint, and Feature Enhancement.

Bright channel

Image I Contrast map

Dark channel

Haze Segment I ¢

Denoised map

Haze filter I
(a)

"&"‘L. ' il s 3
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Figure 3: (a) Illustration of the UCM module, which segments
haze region I; from original image I based on the contrastive
information between the bright and dark channels. (b) Some
examples of the haze regions I; segmented from the image I
by the UCM module.

4.3.1 Input Augmentation. Using a multi-channel hybrid map con-
taining the haze region image extracted by UCM module and the
original image to achieve Input Augmentation, as shown in Figure
4(a). A CNN network is then implemented to extract the feature E,,
it consists of the original image feature and the haze region feature,
and is used for classification.

To obtain the augmented image I, the haze region image Ij, and
original image I are concatenated in input set. And this operation
can be implemented by

I, = concat(L1). (10)
4.3.2  Network Constraint. The Network Constraint method defines
a new loss function L, to guide the update of the image encoder,
the process is illustrated in Figure 4(b). It is used to extract as many
features about the haze region as possible from the original image.
In the haze filter image, the non-haze areas are shown as black, so
the CNN network can only extract features from the haze regions.
In this way, the features extracted from the original image are as
close as possible to the haze region features to achieve the goal of
the Network Constraint method. Notably, using the filtered image
as haze region image instead of the haze segment image in this
section, since the location of the haze region in the filter map is the
same as the original image.



In this method, the input data contains an original image I and a
haze filter map I. Using the same image encoder in both channels
to extract features for I and I, denoted as E; and E p;, respectively.
Finally, the loss Lgim can be calculated by the Egs. 11.

Lsim = KL(E; || Efi)~ (11)

4.3.3  Feature Enhancement. The aim of the Feature Enhancement
method is to complement the features of the original map and haze
region to perform a more accurate classification. Feature extraction
using two channels can retain the feature information of the original
image, and supplement it with the feature information of the haze
area at the feature-level. Both channels use the same CNN network
for feature extraction, so that each channel can learn the feature
information of the other channel and pay more attention to the
feature information that the channel can provide.

In this method, both the original image and the two haze region
maps extracted by UCM can be fused for feature-level information
complementation. As shown in the Figure 4(c), MagNet uses two
channels to extract features from I and I, to obtain features E;, Ej,
respectively. We use the following Eqgs. 12 to E.

Ef = concat(Ei, Ep). (12)

4.4 Training Strategies

UCM-MagNet consists of three main processes, including (a) seg-

menting the haze portion of the image, i.e., I +— I i I, (b) extract-

ing visual features independently in dual channels, i.e., I — E; in

the task channel and I + I f(Is) — Ej, in the magnifier channel, (c)

fusing visual features from two channels for haze classification, i.e.,

E;®E;, = Ef — C. These three processes are constantly interactive

and interdependent. Ideally, they are in a state of dynamic equilib-

rium, and it is non-trivial to train them simultaneously. Therefore,
we use two strategies to guarantee a smooth training effect:

e Segmenting the haze region I from the original image I:
That is, before training MagNet, we first train the UCM module
to segment the haze region I from the original image I. This
module’s two critical parameters can significantly affect its seg-
mentation results, namely the gray threshold gray and the filter
ratio F,. The effects of the different values are described in detail
in Section 5.4.

o Extracting and fusing visual features for haze classification:
MagNet is optimized with two groups of loss terms, including
losses for haze classification, i.e. L. and losses for interactive
information between task channel and magnifier channel, i.e.
Lsim- We proposed two loss tactics used for the above three
fusion methods described in Section 4.3:

— For the Input Augmentation method and the Feature Enhance-

ment method, MagNet is optimized by minimizing loss L.

Lo =CE(s.5) (13)
— For the Network Constrained method, the £;s and Lsim, are

combined by a certain coefficient m to get loss Lom, we train
MagNet model by minimizing this fused loss, i.e.,

Lcom = ml:sim + ‘Ecls (14)
5 EXPERIMENTS
5.1 Datasets

Experiments were conducted on two datasets for visual haze clas-
sification. One, called Hazel-level. Notably, there is few published
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Figure 4: Schematic diagrams of three network designs for
applying the haze segment and haze filter output by the UCM
module. Loss CLS, Loss SIM, and Loss COM refer to Classifi-
cation Loss, Similarity Loss, and Combined Loss respectively.

dataset. To better evaluate the generalization capability of UCM-
MagNet, a new dataset, named Haze-wild, was created. The details
about two datasets are as follows:

e The Image Hazel-level Dataset (Hazel-level Dataset): The
image Hazel-level dataset [14] contains 3024 synthetic images
with 9 classes. These images are based on the algorithms and
dataset provided by the FRIDA dataset.

e Haze-wild Dataset: We use source datasets that contain 5000
sunny and 5000 cloudy images to generate 10 levels of fogging
images with the original images as level 0 through a monocular
depth estimation model [4].

5.2 Model details

We implemented the proposed UCM-MagNet and the algorithms in
comparison in-house with python 3.6.5, with the parameter settings
following the original papers. The details are reported as follows:

e Threshold based methods: There are three algorithms using
threshold based feature including Filter-Based Fog Detection
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Figure 5: Examples of Hazel-level and Haze-wild dataset, and the level of haze increases from left to right; (a) Hazel-level
Dataset includes 9 classes of images and (b) Haze-wild includes 10 classes of images.

Table 1: Performance comparison of haze classification algorithms on Hazel-level and Haze-wild datasets.

Dataset Threshold-based Methods Handcrafted Methods Deep Learning Methods
S&RCDA [1] | FBFDA [9] | HBFDA [18] SVM [31] CNN [27] | LeNet5 [10] | ResNet18 [8] | MagNet(LeNet5) | MagNet(ResNet18)
Hazel-level 0.1529 0.2063 0.2431 0.4532 0.7436 0.8745 0.8998 0.8976 0.9108
Haze-wild 0.1018 0.2121 0.1779 0.2601 0.5181 0.7692 0.8412 0.7921 0.8524

[9], Saturation & RGB-correlation Detection [1] and HSV-Based
Fog Detection [18]. These methods use pixel value information
to calculate the haze concentration by the formulas.

e Classifiers with handcrafted features: The SVM [31] is based cas-
caded SVMs and uses four handcrafted features for classification.

e Deep learning methods: The CNN [27] contains nine convo-
lutional layers, two pooling layers, and two dropout layers. It
achieves the classification of air pollution levels through a ReLU-
based activation function. The LeNet5 [10] contains three convo-
lutional layers, two subsampling layers and two fullconnection
layers. The ResNet18 [8] classifies haze images by residual net-
work.

For proposed UCM and MagNet, the model details are as follows:

(1) Regarding the parameters used in the UCM, we always set the
size of filter Fj, and F; 1/40 of the input image size, the size of
filter F 4, 1/40 of the input image size and the size of filter F,,, ;1
1/70 of the input image size. For the setting of the threshold, we
recommend using our setting in Eqgs. 4.

(2) As for MagNet, parameters are set differently for different
datasets. When using the Hazel-level dataset, batch size is usu-
ally set between [8,16], learning rate is usually chosen between
[5e-5, 1e-4, 5e-4, 1e-3], and optimizer is chosen Adam. When
using the Haze-wild dataset, batch size is usually set as 128,
learning rate is usually chosen between [5e-4, 1e-3, 5e-3]. The
decay is set by 0.1 or 0.5 for every N epoches. When using the
Network Constraint method, the ratio m of L¢om is suggested
to be a small positive value, such as 0.001. We use ResNet18 [8]
and LeNet5 [10] as the base models of the MagNet. The original
image and the haze region map shrunk to the size (64x64). The
corresponding changes in different methods are done on these
two networks. All models were implemented in CUDA 11.3
environment with Pytorch 1.7.1.

5.3 Performance Comparison

This section presents a performance comparison between MagNet
and existing haze classification methods, including three threshold-
based features methods: Saturation & RGB-correlation Detection
(S&RCD) [1], Filter-Based Fog Detection (FBFD) [9], HSV-Based
Fog Detection (HBFD) [18], the handcrafted features mathod SVM
[31], and the Deep Learning features method CNN [27], LeNet5 [10]
and ResNet18 [8]. For both algorithms, we fine-tune their hyper-
parameters to obtain their best performance in the experiments.
We can observe the followings as shown in the table 1:

e Among various methods, the precision on Haze-wild dataset is
lower than that of Hazel-level, which shows that the complexity
of the background of haze images and the number of categories
affect the precision of haze classification.

o Threshold-based method performs poorly on both datasets, which
may be caused by the loss of information for threshold calculat-
ing. They are only valid for data that conform to assumptions,
so the overall progress is still limited.

o The handcrafted feature extraction method achieves a 46.21% per-
formance improvement over calculating haze values by equations
in both datasets. But the quality of feature engineering limits
the performance of machine learning, and the fitting process is
difficult to intervene.

e Among the end-to-end feature extraction methods, the CNN
method achieves 64.07% precision improvement than the hand-
crafted feature extraction method on the Hazel-level dataset and
achieves 99.19% precision improvement on the Haze-wild dataset
with a simpler background, which shows the advantages of data
fitting.

e On both datasets, the proposed MagNet achieves significant pre-
cision improvement than existing methods using different back-
bones(20.71% with LeNet5 and 25.87% with ResNet18), demon-
strating the model-agnostic of our method and verifies the effec-
tiveness of our proposed UCM module and MagNet.
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Figure 6: Haze region maps output by UCM under different
parameter conditions. Gray Threshold is the threshold of
calculating the haze region in gray map, and Filter Ratio is
the ratio of the size of haze image to the filter.

Table 2: Time cost comparison of UCM for filtering images
of different size.

Size | 600*300 | 780520 | 1080809 | 1920*1441
Pixels 180K 400K 870K 2760K
Time 0.23s 0.42s 1.09s 4.12s

In summary, threshold-based and handcrafted feature extract-
ing methods perform limited results since the loss of information
and the mismatching of assumption and data. The proposed Mag-
Net achieves better precision on both Hazel-level and Haze-wild
datasets compared to other methods. Compared with the perfor-
mance of the other models, MagNet achieves good performance by
complementing the amplified haze features with the original image
features. This result also demonstrates the role of haze region maps
in haze classification.

5.4 In-depth Analysis of UCM

UCM module has two main parameters: the Gray Threshold and
the Filter Ratio, and both of which affect the segmented size of the
detected haze area.

As shown in the Figure 6, as the gray threshold increases, the per-
centage of haze in our extracted images increases. As the Filter Ratio
decreases, the haze region we extract will carry less background
information. Note that the threshold value is set with respect to
image size, where an over-large value may lead to an overlook to
haze regions and a too-small one may affect the performance of
background detection. However, it is observed that a desired result
can be achieved with the parameter values in mild ranges.

As shown in the table 2, the UCM algorithm takes very little time
to process an image and tends to grow linearly with the increase of
pixel values. Notably, the processing time can be further accelerated
by a batch-manner GPU processing.

5.5 Ablation Study

In this section, we investigate the effect of the extracted haze region
images on the classification results under different methods.

Table 3: Classification performance of different combina-
tions of components on Hazel-level dataset and Haze-wild
dataset. F: using haze filter map; S: using haze segment map;
IA:using method Input Augmentation; NC:using method Net-
work Constraint; FE:using method Feature Enhancement

Model Hazel-level Haze-wild
LeNet5 | RseNet18 | LeNet5 | RseNet18
Base 0.8745 0.8998 0.7692 0.8412
Base+IA+S 0.7913 0.9405 0.6897 0.8170
Base+IA+F 0.7997 0.8712 0.6439 0.7725
Base+NC+F | 0.8624 0.8943 0.7046 0.8510
Base+FE+F | 0.8161 0.8932 0.6552 0.8223
Base+FE+S | 0.8976 0.9108 0.7921 0.8524

1.Evaluation on Base Models: As observed in the row “Base” of
Table 3, both of the models achieve comparably good performance
on the two datasets. Overall the performance of ResNet18 is better
than LeNet5 on both datasets.

2. Evaluation on Input Augmentation: As shown in the row
“Base+IA+S” of Table 3, using the segment map as augmented con-
tents of ResNet18 leads to an improvement in performance on
Hazel-level dataset and a drop on Haze-wild dataset. Using the seg-
ment map as the augmented contents of LeNet5 leads to an obvious
drop on both datasets. In the row “Base+IA+F” of Table 3, using
the filter map as the augmented contents of both networks leads
to a drop on the two datasets. The good performance of using the
segment map on Hazel-level dataset demonstrates the haze region
map we extracted from UCM can improve the precision of classifi-
cation. But the drop in performance on both datasets shows that
Input Augmentation is not a general method for all CNN models.
This method is limited to the choice of network and dataset.

3. Evaluation on Network Constraint: As shown in the row
“Base+NC+F” of Table 3, on Hazel-level dataset, using this method
leads to slightly lower performance. On Haze-wild dataset, using
this method on ResNet18 has a better performance in the precision
of classification than the base model. But it leads to a drop when us-
ing this method on LeNet5. The performance on Haze-wild dataset
and ResNet18 demonstrates that the idea of having the features
extracted by the network cover the whole haze region as much as
possible is feasible.

4. Evaluation on Feature Enhancement: As shown in the row
“Base+FE+F” of Table 3, using the filter map as the complement to
the feature of LeNet5 leads to a drop in performance on both of
Hazel-level dataset and Haze-wild dataset. It also leads to slightly
lower performance on Hazel-level dataste when using the filter
map as the complement to the feature of ResNet18, while it gets a
better performance on Haze-wild dataset. In the row “Base+FE+S”
of Table 3, using the segment map as the complement to the feature
of both two networks leads to an improvement in performance on
the two datasets. The result shows that this method using the haze
segment map is a general method on the CNN models. We will
provide an in-depth analysis in the following section.
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Figure 7: Visualization of feature attentions and model predictions of Base model (the blue branch) and UCM-MagNet (the
red branch). We use GradCAM [23] to generate heatmaps and show outputs near the ground-truth, the ground-truth class is
emphasised by background color, while the predicted class of the Base model and UCM-MagNet are marked in bolded bule and

bolded red respectively.
5.6 Case Study

In this section, we will further analyze how UCM-MagNet improves
haze classification in the view of feature attentions and outputs
of model. We randomly selected four examples from the Hazel-
level dataset and analyzed the different outputs by Base model
(ResNet-18) and UCM-MagNet (ResNet-18).

When the foreground is regular and distinguishable, both meth-
ods give correct prediction as shown in Figure 7(a). The features
learned by the Base model focus on foreground objects and lack
attention to the haze region. For UCM-MagNet, the task channel is
more focused than Base model since another channel would deal
with the haze region; the magnifier channel extracts important
features from the haze segment because the model has learned the
whole picture, thus the prediction of ground-truth is more promi-
nent. This case suggests that there is a cooperative mechanism in
the UCM-MagNet channels to learn image features at different lev-
els. As shown in Figure 7(b), when the foreground objects are more
complex (like trees and buildings mixed), the Base model hardly
pays attention to the region where the haze gathers and is disturbed
by the distinguishable foreground information, so outputs a wrong
prediction. Due to the dual-channel collaboration, haze image chan-
nel of UCM-MagNet pays attention to the complex foreground and
magnifier channel provides the haze area as a reference at the same
time, for UCM-MagNet to learn the features of the complex details
and make a correct classification.

In some situations like Figure 7(c) shows, where the dense haze
occupies most of the image. In this case, due to the lack of compara-
ble objects, both of the two models need to focus on the boundary
of foreground and dense haze region, and the Base model predicts
correctly while the UCM-MagNet gives the wrong prediction. Since
UCM-MagNet gets smaller attention in task channel, the bound-
ary information it gets in the haze image is limited, but due to
the haze information provided by magnifier channel, the output
at the ground-truth class and the predicted class are actually very
close. Another case of this situation is shown in Figure 7(d). At
this time, both models predict incorrectly. The Base model heavily
focuses on the foreground, and the output bias is more serious
than UCM-MagNet; while UCM-MagNet uses dual-channel to first
reduce excessive attention to the foreground, and secondly, for the

magnifier channel, it strengthens the attention to the boundary of
the foreground and the dense haze region, and the prediction is still
relatively close to the ground-truth.

From the above analysis, we found there is a cooperative mecha-
nism in the dual-channel structure of UCM-MagNet. The Coopera-
tion during the training process provides model multi-level informa-
tion from images. When UCM-MagNet learns the overall features
of the haze image, it reduces excessive attention to the foreground,
and the magnifier channel filters and concentrates important re-
gions for classification, which enables UCM-MagNet to deal with
more complex haze images.

6 CONCLUSION

This paper presents a dual-channel and model-agnostic framework
(UCM-MagNet) for fast and robust haze classification. Conventional
methods use the original image features, which pay too much atten-
tion to the background and cannot capture the feature of haze in the
image. UCM-MagNet uses an unsupervised contrastive masking
algorithm (UCM) to obtain the haze region image and performs
pixel-level magnification. A dual channel structure is designed to
realize feature fusion, which not only solves the problem of insuffi-
cient feature information of the magnifier channel but also reduces
the interference of irrelevant background in the task channel. Ex-
perimental results show that our method can extract the haze area
quickly and accurately and using haze segments makes MagNet
outperform existing methods in visual haze classification.

Our proposed solution achieves impressive results. The future
work includes the investigation of the fine-grained haze features for
improved predictive performance and the incorporation of multiple
data sources besides photos to gain awareness of both visual and
invisible pollution. We want to expand the current version of UCM
to detect air quality in night photos and more challenging weather,
such as rain. In addition, we hope to expand the combination of
different methods in MagNet to classify better.
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