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Figure 1: (a) An overview of our method, circles with different colors denote different fonts, dotted lines denote the mapping
between font domains. The font generator learns prior knowledge bymeta-training, and then quickly adapts to the generation
of new fonts by fine-tuning. (b) Examples of Chinese character images generated by our method and pix2pix[11].

ABSTRACT
The automatic generation of Chinese fonts is challenging due to the
large quantity and complex structure of Chinese characters. When
there are insufficient reference samples for the target font, exist-
ing deep learning-based methods cannot avoid overfitting caused
by too few samples, resulting in blurred glyphs and incomplete
strokes. To address these problems, this paper proposes a novel
deep meta-learning-based font generation method (MLFont) for
few-shot Chinese font generation, which leverages existing fonts
to improve the generalization capability of the model for new fonts.
Existing deep meta-learning methods mainly focus on few-shot
image classification. To apply meta-learning to font generation, we
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present a meta-training strategy based on Model-Agnostic Meta-
Learning (MAML) and a task organization method for font genera-
tion. The meta-training makes the font generator easy to fine-tune
for new font generation tasks. Through random font generation
tasks and extraction of glyph content and style separately, the font
generator learns the prior knowledge of character structure in the
meta-training stage, and then quickly adapts to the generation of
new fonts with a few samples by fine-tuning of adversarial training.
Extensive experiments demonstrate that our method outperforms
the state-of-the-art methods with more complete strokes and less
noise in the generated character images.
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1 INTRODUCTION
The font library is a collection of electronic characters and is widely
used on various terminal devices. The number of font products
has grown rapidly in the past two decades, but the existing font
resources still cannot meet the diverse and personalized needs
of the digital age. Currently, the production of the font library
mainly relies on the manual work of designers. Unlike the English,
which contains only a small number of characters, the Chinese
charset contains a huge number of characters (70,244 characters in
GB18030). Except for large numbers, some Chinese characters are
comprised of lots of strokes, which result in complex shapes and
structures. Chinese characters are the most time-consuming part of
the font library generation. The automatic generation of Chinese
fonts remains a difficult problem.

Most computer graphics-based methods generate a new font
library by reusing and assembling radicals[18, 39, 41]. Typically,
existing reference glyphs are first decomposed into predefined rad-
icals. Then, the remaining glyphs are generated by the assembly
of predefined radicals. Such methods inevitably require manual in-
tervention and the domain knowledge of Chinese characters. Deep
learning-based methods generate new fonts in an end-to-end man-
ner by learning a mapping from an existing font domain to the new
font domain[4, 12, 13, 28, 34, 38]. They rely on a lot of reference
samples of new fonts to learn the mapping that can generalize a
large number of characters. In the case of few samples, these meth-
ods cannot avoid the problem of overfitting and generate blurred
and incorrect strokes.

In the real world, relying on the knowledge of character structure
they have learned before, human beings can easily infer the appear-
ance of the remaining glyphs of a new font from a few samples.
Inspired by this idea, we propose a novel deep meta-learning-based
font generation method called MLFont that leverages the prior
knowledge of the character structure learned from existing font
sets to generate new fonts with a few samples. Meta-learning aims
to transfer meta-knowledge from similar tasks to new tasks through
task-level learning, which mainly focuses on few-shot image clas-
sification. In order to apply meta-learning to font generation, we
present a task organization method for font generation.

Our font generator consists of two encoders to extract the con-
tent and style of glyphs separately, and a decoder for mixing content
and style features to generate the characters of the target font. We
present a meta-training strategy based on MAML, which trains the
font generator through a large number of random font generation
tasks. After meta-training, only a few samples of new fonts are
needed, and the font generator can adapt to the generation of new
fonts by fine-tuning of adversarial training.

We evaluated the proposed MLFont through the generation of
multiple new fonts and compare it with existing methods. The ex-
perimental results demonstrate that our method significantly out-
performs the state-of-the-art methods with more complete strokes
and less noise in the generated character images. We analyzed the
interpretability and effectiveness of our method through the ab-
lation study. Besides, the case study shows that our method has
good generalization performance for characters that have never
appeared in the meta-training. The main contributions of our work
are as follows:

• We propose a novel deep meta-learning-based font genera-
tion method (MLFont) for few-shot Chinese font generation,
which leverages existing fonts to improve the generalization
capability of the model for new fonts.

• We propose a general framework for applying meta-learning
to font generation, which consists of a meta-training strategy
based on MAML and a task organization method for font
generation. To the best of our knowledge, our proposed
MLFont is the first font generation method based on meta-
learning.

• Extensive experiments demonstrate that our method signifi-
cantly outperforms the state-of-the-art methods with more
complete strokes and less noise in the generated character
images.

2 RELATEDWORK
2.1 Image-to-Image Translation
The image-to-image translation aims to transfer the input image
from the source domain to a target domain. It has a wide range of
applications in many image processing problems, such as semantic
segmentation[19, 23], style transfer[10, 14], pose estimation[29, 30].

With the development of Generative Adversarial Networks [8,
21, 22, 24], many classic image-to-image translation models have
been proposed[11, 40]. Isola et al. proposed pix2pix[11] based on
conditional GANs, which is a strong baseline image-to-image trans-
lation model. The training of pix2pix requires paired images. To
solve the training problem without paired images, cycleGAN is pro-
posed for unpaired image-to-image translation[40]. Cyclegan can
generate images of the target domain in an unsupervised manner.

At the same time, as a kind of image-to-image translation task,
style transfer has attracted the attention of many researchers in
recent years. Gatys et al. first use convolutional neural networks
for style transfer by minimizing the difference of Gram matrices[7].
Since then, many feed-forward networks for style transfer have
been proposed[10, 14, 31], some methods can generate high-quality
images[20, 32]. For the generation of Chinese fonts, the generated
image must have complete strokes and sharp glyphs, and the over-
all glyphs should be consistent with the target font style. While
ordinary style transfer only needs to check style consistency from
the perspective of visual art.

2.2 Font Generation
Most existing methods generate new fonts through the mapping
from the source font domain to the target font domain. Zi2zi[28]
is the first method to generate Chinese glyph images using GANs.
Similar to zi2zi, both DCFont[12] and SCFont[13] use conditional
GANs with font category embedding for Chinese font generation.
DenseNetCycleGAN[4] uses cycleGAN for Chinese characters gen-
eration. With pix2pix as the base model, MTfontGAN[34] generates
multiple new fonts in parallel by multi-task learning.

Besides, glyphs can be regarded as a combination of semantic
content and font style, and several methods deal with font genera-
tion in the form of style transfer. EMD[38] is a font style transfer
model with a bilinear mixer. SA-VAE[27] is a Chinese character Vari-
ational Auto Encoder based on the domain knowledge of character
structure.
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Figure 2: The overview of our proposed method for few-shot Chinese font generation. In the meta-training stage, the model
parameters are continuously updated by meta-optimization, and each meta-optimization is performed using n random font
generation tasks. The specific process and task organization are introduced in section 4.2. After obtaining the prior model, we
fine-tune it to quickly adapt to the new font generation with a few samples by adversarial training.

Artistic font generation (so-called text effects transfer) focus on
the texture transfer of glyph images, which is related to our work.
Multi-ContentGAN[3] is the first method for the English artistic
font generation, which cannot handle the Chinese characters. Both
TET-GAN[35] and AGIS-Net[6] are proposed for the Chinese artis-
tic font generation. Existing text effects transfer methods focus on
the transfer of texture styles, and cannot cope with the task of font
generation for geometric style transfer.

2.3 Meta-Learning
Deep meta-learning attempts to solve the limitations of deep learn-
ing in the case of few samples from the perspective of "learning how
to learn"[9]. Meta-learning has been shown to achieve promising
results for few-shot image classification, the classifier can recognize
the image of unseen categories based on a few samples. Existing
meta-learning methods are usually divided into three categories:
optimization-based methods[5, 25], model-based methods[1, 26],
and metric-based methods[16, 33]. The optimization-based meth-
ods are easier to integrate with other tasks because they do not
rely on specific models. Several methods have proposed combining
meta-learning with GANs to further improve the performance of
few-shot image classification[2, 37]. Recently, several works use
meta-learning for generative tasks, such as music generation[17]
and talking head generation[36]. While our work deals with the
task of the Chinese font generation. To the best of our knowledge,
we are the first to use meta-learning for font generation.

3 PROBLEM FORMULATION
Font generation refers to generating all glyph images of the target
font library based on some reference samples in an end-to-end
manner. First, a source font is used to form a training set with the
reference sample of the target font. Then the font generator learns
a mapping from the source font domain to the target font domain.
Subsequently, the mapping is used to generate all glyph images of
the target font except the reference sample.

The generation of a glyph image is formulated as {xpi → xqi },
where x denotes a glyph image, the subscript i denotes the i-th

character in the font library, the superscript p and q denote the
source font and the target font respectively. This mapping can be
further formulated as {xpi , x

q
k → xqi }, where x

q
k can also be multiple

glyph images to provides the guidance of the target font style. The
glyph image generation is an image-to-image translation process
conditioned on the target font style.

4 METHOD
4.1 Overview
In this section, we detail our deep meta-learning method for few-
shot Chinese font generation. Our approach leveragesmeta-learning
to seek the general rules for font generation among random font
generation tasks. That is, we utilize existing font sets to learn the
prior knowledge of character structure for the new font genera-
tion. The overview of our approach is shown in Figure 2, which is
composed of two stages, meta-training and fine-tuning. In the first
stage, we first randomly sample to form font generation tasks, and
then divide the task into a support set and a query set. We train
the font generator by meta-optimization. In the second stage, we
fine-tune the font generator on a new font with a few samples (as
few as 32 samples) by adversarial training, to obtain the new font
generator. The new font generator can generate all glyph images
of the new font library (20,902 characters).

In ourmethod, themodel must be able to copewithmulti-domain
font generation tasks. As shown in Figure 2, the font generator
consists of a content encoder, a style encoder, and a decoder. The
content encoder extracts the character content of a glyph image.
The style encoder extracts the font style of several glyph images
concatenated in channel dimensions. The decoder mixes the ex-
tracted content and style features to output the target glyph image.
The content skip-connection guarantees the accuracy of the glyph
skeleton at all scales, the style skip-connection provides style guid-
ance to the decoder layer-by-layer. In the fine-tuning stage, an
additional discriminator is used for adversarial training to improve
the quality of the generated glyph images.
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4.2 Meta-training Stage
We adopt an optimization-basedmeta-learningmethod for themeta-
training, which is a bilevel optimization strategy using multiple font
generation tasks. This training strategy makes the font generator
easier to adapt to new font generation tasks while alleviating over-
fitting on few samples. The bilevel optimization requires the dataset
to be organized into different tasks with support set and query set.
The task organization we designed for the font generation is given
below.

Target Style(S)

Support set Query set

Source Content(C)

Target Glyph(T)

Figure 3: A specific task with ten target glyph images. The
arrow denotes the mapping from the source font (C) to the
target font (T) conditioned on the target style (S). The sup-
port set is used to learn the mapping for the current task,
and then the query set is used to evaluate the generalization
performance of the mapping.

Task Organization. In the meta-training stage, a font genera-
tion task refers to generating multiple target glyph images with the
same font style. One task is formulated as T = {C, S → T }, where
C and T refer broadly to several source and target glyph images
respectively, S represents a set of target style images. A specific task
with ten target glyph images is shown in Figure 3. C comes from
the source font, S and T come from the target font. S consists of
seven glyph images. There are ten source and target glyph images
in C and T respectively.

T is divided into support set and query set. We use the support
set to calculate the adapted parameters of the model for the current
font generation task and evaluate its generalization performance
on the query set. Note that each T is dynamic and random in the
meta-training, which means that the source font and target font are
randomly selected without repetition. The characters in T are also
random. Random tasks can improve the generalization capability
of the model.

Meta-optimization. In the meta-training, the parameters of
the font generator are continuously updated by meta-optimization
until convergence. One meta-optimization is performed through a
batch of font generation tasks {T1, T2 , ..., T n}, where T = {C, S, T },
each task comes from random sampling on the meta-training set.
We use G𝜃 to represent the font generator with parameters 𝜃 . When
adapting to the task T i , the parameters 𝜃 become 𝜃 ′

𝑖
, where i ∈

{1, 2, ..., n}. The adapted parameters 𝜃 ′
𝑖
is computed usingm gradient

descent updates on the support set. For one of the m gradient
updates,

L𝑖
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =∥ G𝜃 ′𝑖 (C

𝑖
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 , S

𝑖 ) − T 𝑖𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∥1, (1)

𝜃 ′𝑖 = 𝜃 ′𝑖 − 𝛼∇𝜃 ′
𝑖
L𝑖
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (G𝜃 ′𝑖 ), (2)

Algorithm 1: MLFont
Input: Meta-training set D𝑚𝑒𝑡𝑎 , font generator G, gradient

update steps m, number of tasks n, learning rate 𝛼 , 𝛽 ,
and 𝛾 , new font training set D𝑛𝑒𝑤

Output: The new font generator G′

/* meta-training */

1 Initialize Parameters 𝜃
2 while not done do
3 Randomly sample n tasks (T1∼n) from D𝑚𝑒𝑡𝑎

4 L𝑚𝑒𝑡𝑎 = 0
5 for i ∈ {1,2,...,n} do
6 𝜃 ′

𝑖
= 𝜃

7 for j ∈ {1,2,...,m} do
8 Evaluate L𝑖

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 by Eq. 1
9 Evaluate ∇𝜃 ′

𝑖
L𝑖
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (G𝜃 ′

𝑖
)

10 𝜃 ′
𝑖
= 𝜃 ′

𝑖
− 𝛼∇𝜃 ′

𝑖
L𝑖
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (G𝜃 ′

𝑖
)

11 end
12 Evaluate L𝑖

𝑞𝑢𝑒𝑟𝑦 by Eq. 3
13 L𝑚𝑒𝑡𝑎 = L𝑚𝑒𝑡𝑎 + L𝑖

𝑞𝑢𝑒𝑟𝑦

14 end
15 Optimize 𝜃 via Adam(L𝑚𝑒𝑡𝑎 , 𝜃 , 𝛽)
16 end

/* 𝜃 become 𝜃 ′ after meta-training */

/* fine-tuning */

17 for samples in D𝑛𝑒𝑤 do
18 Evaluate L𝑛𝑒𝑤 by Eq. 7
19 Optimize 𝜃 ′ via Adam(L𝑛𝑒𝑤 , 𝜃 ′, 𝛾 )
20 end

where𝛼 is the learning rate of the gradient descent. After getting the
adapted parameters 𝜃 ′

𝑖
, we evaluate its generalization performance

on the query set. The loss of query set is as follows:

L𝑖
𝑞𝑢𝑒𝑟𝑦 =∥ G𝜃 ′

𝑖
(C𝑖

𝑞𝑢𝑒𝑟𝑦, S
𝑖 ) − T 𝑖𝑞𝑢𝑒𝑟𝑦 ∥1 . (3)

The font generator parameters are optimized in the direction of
good generalization performance on the query set of T1∼n. The
meta-objective is as follows:

L𝑚𝑒𝑡𝑎 =

𝑛∑
𝑖=1

L𝑖
𝑞𝑢𝑒𝑟𝑦 . (4)

The meta-optimization is performed via Adam with the learning
rate 𝛽 . Note that the meta-optimization aims to optimize the param-
eters 𝜃 , whereas the meta-objective is computed using the adapted
parameters 𝜃 ′

𝑖
.

4.3 Few-shot Learning by Fine-tuning
After the meta-training converges well, the font generator can
quickly adapt to the generation of new fonts with a few samples
by fine-tuning of adversarial training. Unlike the meta-training
stage, we train the font generator with a new font generation task
that fixes the source font and target font, where any font in the
meta-training can be used as the source font and a new font as the
target font.
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Figure 4: Comparison of generated glyphs in four different styles obtained by our MLFont and other five existing methods.
HZS, JTJ, JYH, and FLB are four different Chinese fonts.

Table 1: Quantitative evaluations of our MLFont and other five existing methods on four new fonts.

Method
Font HZS JTJ JYH FLB

L1 loss↓ IOU↑ SSIM↑ L1 loss↓ IOU↑ SSIM↑ L1 loss↓ IOU↑ SSIM↑ L1 loss↓ IOU↑ SSIM↑
Pix2pix 0.1988 0.5515 0.7015 0.1958 0.5704 0.7118 0.1809 0.5952 0.7207 0.1984 0.6406 0.7602
Zi2zi 0.3851 0.4632 0.6123 0.0971 0.5591 0.8178 0.1880 0.5024 0.7346 0.3413 0.5209 0.6635

DenseNetCycleGAN 0.2898 0.2637 0.6303 0.2618 0.5042 0.6644 0.2504 0.4393 0.6249 0.2922 0.4927 0.7023
MTfontGAN 0.1969 0.5563 0.7048 0.1922 0.5781 0.7235 0.1804 0.6003 0.7220 0.1996 0.6390 0.7606

EMD 0.3168 0.3945 0.6456 0.2586 0.4129 0.6684 0.4017 0.3956 0.5974 0.2376 0.4245 0.7115
Ours 0.1891 0.5817 0.7129 0.1899 0.5936 0.7237 0.1797 0.6188 0.7248 0.1924 0.6558 0.7618

We use G′ to represent the font generator with parameters 𝜃 ′
that obtained through the meta-training. An randomly initialized
discriminator D is used for the training of new fonts to further
improve the quality of the generated results. The objective of a
GAN can be expressed as:

L𝐺𝐴𝑁 (G′,D) = EC,T [logD(C, T )]+
EC,S [log(1 − D(C,G′(C, S)))],

(5)

The number of target style images in S is consistent with the meta-
training. The L1 loss is

L𝐿1 (G′) = EC,S,T [∥ G′(C, S) − T ∥1] . (6)

The final objective is

L𝑛𝑒𝑤 = argmin
𝐺′

max
𝐷

L𝐺𝐴𝑁 (G′,D) + 𝜆L𝐿1 (G′). (7)

Algorithm 1 summarizes our proposedMLFont for few-shot Chinese
font generation.

5 EXPERIMENTS
5.1 Datasets
We collected a dataset containing 21 fonts, each font with 6,763
character images. All images are 256x256 in size. We randomly

select 12 fonts as the meta-training set, and the remaining 9 fonts
as new fonts to evaluate the performance of the few-shot font
generation. The abbreviations for the names of the 9 new fonts
are HZS, JTJ, JYH, FLB, ZST, LS, KT, PBT, and HXW. We randomly
select 32 character images as the training set of each new font. The
test set of each new font consists of the remaining 6,731 characters.
The Arial (a kind of font in the meta-training set) is default as the
source font in our experiments.

To evaluate the generalization performance of our method for
unseen character structures, we randomly selected two of the above
9 new fonts and collected an additional dataset with 20,902 charac-
ters for these two fonts. The training set of these two fonts contains
32 character images, and the remaining 20,870 characters are used
as the test set. Since the meta-training set contains 6,763 characters,
there are 14,139 characters in this test set that have not appeared
in the meta-training stage.

5.2 Implementation Details
The two encoders of our font generator have the same architecture.
The encoder consists of six convolution layers, the number of output
channels of each layer is 64, 128, 256, 512, 512, and 512. The decoder
consists of six upsampling layers, the number of output channels of
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each layer is 512, 512, 256, 128, 64, and 3. We use the discriminator
in pxi2pix[11] for the training of new fonts.

In the meta-training stage, we set the number of tasks used in
one meta-optimization to 3 and the number of gradient update
steps for inner optimization to 1. Both meta-training and new font
training use Adam[15] as the optimizer, we set all learning rates
to 0.0001. In the fine-tuning stage, the weight 𝜆 is set to 10. The
meta-training takes about 28 days to converge very well on an
Nvidia GPU RTX2080Ti. The training of new fonts only takes a few
minutes.

5.3 Comparison with Existing Methods
Comparison methods.We compare our method with five meth-
ods. A brief description of these methods is as follows.

• Pix2pix[11] is the most classic image-to-image translation
model, it is the baseline for font generation.

• Zi2zi[28] is the first to use GANs for the generation of Chi-
nese characters images.

• DenseNetCycleGAN[40] uses CycleGAN with a DenseNet
module for the generation of Chinese characters.

• MTfontGAN[34] is a multi-task learning font generation
method.

• EMD[38] is a font style transfer model with a bilinear mixer.
Fairness. To ensure fairness, the above five methods are pre-

trained on the meta-training set of our method. Then we fine-tune
them on new fonts with 32 samples. It may be that our pre-training
set contains too few font categories for EMD, resulting in poor test
results on the new font.

Evaluation metrics. The following three metrics are used to
quantitatively evaluate the generated results. Different evaluation
indicators can provide a certain reference from different angles.

• L1 loss (Mean Absolute Error) calculates the pixel error be-
tween the generated glyphs and ground truth.

• IOU (Intersection-over-Union) is a metric for object detec-
tion, where it calculates the overlap rate between the gener-
ated glyphs and the ground truth.

• SSIM (Structural Similarity) is a metric for the structural
similarity of two images.

Comparison results. Figure 4 shows the visual comparison
results on four fonts. Table 1 shows quantitative evaluations. The
visualization results in Figure 4 clearly show that our method can
accurately generate characters with complex structures. In contrast,
the other five methods generate blurred and incorrect strokes. In
the quantitative evaluation of Table 1, we outperform five methods
on 9/12 metric data, zi2zi outperforms us on 3/12 metric data. We
argue that the results of zi2zi in Figure 4 are blurred and unstable,
while our results are sharp and stable. Our method significantly
outperforms these five methods in few-shot Chinese font genera-
tion.

5.4 Ablation Study
5.4.1 Effect of Random Task Organization. According to pre-
vious intuition, the model is easier to train in a one-to-manymanner
with a fixed source font and many target fonts, just like existing
font generation methods. Through experiments, we found that the

       Random

       Fixed

     Ground Truth
     （ZST）

Figure 5: Comparison of glyphs generated in the case of
fixed or random source font.

one-to-many manner with random target fonts enables the style
encoder to extract styles perfectly, while the content encoder is
weak. We believe that the encoder needs to become more powerful
to cope with the random input, which improves the generalization
capability of the model. Therefore, we propose a random task or-
ganization method. The source font, target font, and characters of
each font generation task are random. We use a controlled trial
to verify the effectiveness of random source font. The variable of
this experiment is fixed or random source font. Figure 5 shows the
test results of a new font with 32 samples. Generators trained by
random source fonts can generate more accurate strokes. Random
tasks improve the performance of the model, and it also slows down
the convergence of the meta-training.

Ground Truth
（LS）

Without

With

Figure 6: Comparison of glyphs generated with or without
inner optimization.

5.4.2 Effect of Inner Optimization. We conduct a controlled
trial to verify the effectiveness of the bilevel meta-optimization
strategy. Figure 6 shows the comparison of glyphs generated with
or without inner optimization. Although it may not be obvious, the
results of using inner optimization are closer to the ground truth.
According to Algorithm 1, the inner optimization has m gradient
update steps. When not using inner optimization, m is set to 0.
When using inner optimization, m is set to 1. In experiments, we
found that the high derivative produced by the inner optimization
leads to a high computational cost. Since the results of m = 1 are
acceptable, we set m to 1 in all experiments. More update steps yield
better results but incur higher computational costs. Through the
bilevel meta-optimization strategy, the model can generate more
accurate glyphs.

5.4.3 Effect of The Number of Tasks in Meta-optimization.
In our method, one meta-optimization is performed through n tasks.
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n = 1

n = 2

n = 3

n = 4

n = 5

Ground Truth
（KT）

Figure 7: The effect of the number of tasks in a meta-
optimization.

We conduct a controlled trial with different n. In the meta-training
of different n, the number of samples seen by the font generator
cannot be guaranteed to be the same. Here we control the same
number of meta-optimization for the meta-training of different n.
The results in Figure 7 shows that the strokes of the characters
are incorrect when n is 1 and 2. When n reaches 3, the generated
result becomes clear and stable. This experiment shows that the
meta-optimization using multiple tasks makes the font generator
learn better.

Ground Truth
（PBT）

20 epochs

10 epochs

Before fine-tuning

Figure 8: Comparison of glyphs generated before and af-
ter fine-tuning. Themodel generates correct character struc-
tures before fine-tuning, and gradually learned the style of
the new font (PBT) through a few epochs.

5.4.4 Character Structure Learned by Meta-training. Figure
8 shows the comparison of generated results before and after fine-
tuning.We can see that themodel can generate the correct character
structure before fine-tuning. For the training of new fonts, the
model focuses on learning font style, so it can quickly adapt to the
new font generation. This experiment verifies that the generator

has learned the prior knowledge of character structure through
meta-training.

5.5 Case Study

8 16 32 64 128 256 512Ground Truth
（HXW）

Figure 9: The effect of new font training set size. The changes
of generated results when the size of the new font training
set is 8, 16, 32, 64, 128, 256, and 512.
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Figure 10: The trend of L1 loss on the test set as the training
set size increases. HXW, LS, and HZS represent three differ-
ent new fonts.

5.5.1 Effect of New Font Training Set Size. Figure 9 shows the
changes of generated results when the size of the new font training
set is 8, 16, 32, 64, 128, 256, and 512. It can be seen that the details
of the strokes become accurate as the number of reference samples
increases. Note that although the results of 8 samples are not good,
the semantic content of characters is clear. This is the specialty of
our method that differs from other methods. The reason for this
specialty is that our model adapts to the new font generation by
the adjustment on strokes-level, but 8 reference samples provide
too few reference strokes to generate accurate font style. When the
number of reference samples reaches 32 or 64, the result gradually
becomes acceptable. Therefore, compared to other deep learning-
based methods, our method can produce good results in the case of
few samples. The line chart in Figure 10 shows the variation trend
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of the results as the number of reference samples increases. The
performance of our method improves as the number of reference
samples increases. This implies that our method will have better
performance on the new font with more reference samples.

HZS FLB

Pix2pix

Ours

Ground Truth

Figure 11: The test results of unseen characters generated by
our MLFont and pix2pix on two new fonts (HZS and HLB),
the unseen character here refers to the character structures
that do not appear in the meta-training.

5.5.2 Generalization Performance For Unseen Characters.
We evaluate the generalization performance of our method on
two new fonts containing 20,902 characters. This experiment only
requires 32 reference samples to generate the remaining 20,870
characters. In the meta training set, each font contains 6,763 charac-
ters. The two new fonts each contain 20,902 characters, two-thirds
of the characters are unseen in the meta-training stage. Figure 11
shows the test results of unseen characters generated by our ML-
Font and pix2pix. Our method can generate clear glyph images
for unseen character structures. In contrast, the results of pix2pix
are blurred. This experiment shows that our method has excellent
generalization performance for unseen character structures.

6 CONCLUSION
In this paper, we propose a novel deep meta-learning-based font
generation method for few-shot Chinese font generation. In our
approach, the model learns the prior knowledge of character struc-
ture on existing font sets through meta-training, and then quickly
adapts to the new font generation by fine-tuning of adversarial train-
ing. Only a few samples are needed to generate a new large-scale
Chinese font library. Extensive experiments of multiple new font
generation demonstrated that our proposed MLFont consistently
outperforms existing methods in terms of both the completeness
of the character radicals and the sharpness of the generated glyph
images.
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