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ABSTRACT

Food recognition for user-uploaded images is crucial in visual diet

tracking, an emerging application linking multimedia and health-

care domains. However, it is challenging due to the various visual

appearances of food images. This is caused by diferent conditions

when taking the photos, such as angles, distances, light conditions,

food containers, and background scenes. To alleviate such a seman-

tic gap, this paper presents a cross-modal alignment and transfer

network (ATNet), which is motivated by the paradigm of learning

using privileged information (LUPI). It additionally utilizes the in-

gredients in food images as an łintelligent teacherž in the training

stage to facilitate cross-modal information passing. Speciically, AT-

Net irst uses a pair of synchronized autoencoders to build the base

image and ingredient channels for information low. Subsequently,

the information passing is enabled through a two-stage cross-modal

interaction. The irst stage of interaction adopts a two-step method,

called partial heterogeneous transfer, to 1) alleviate the intrinsic

heterogeneity between images and ingredients and 2) align them

in a shared space to make their carried information about food

classes interact. In the second stage, ATNet learns to map the visual

embeddings of images to the ingredient channel for food recogni-

tion from the view of łteacherž. This leads a reined recognition

by a multi-view fusion. Experiments on two real-world datasets

show that ATNet can be incorporated with any state-of-the-art

CNN models to consistently improve their performance.
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1 INTRODUCTION

Visual diet tracking [18, 22, 25] is an emerging AI-powered appli-

cation in healthcare domain. It collects the users’ uploaded food

photos and incorporates food recognition algorithms to understand

their eating habits. Comparing with text-based approaches for diet

management, such as MyFitnessPal, visual diet tracking is more

convenient for users to record their daily intake. This has triggered

the launch of several research projects and startup companies, such

as FoodLog1, TADA project2, foodAI3, and DietLens4.

Food recognition for user-uploaded images is the key to visual

diet tracking, which, in an ideal case, should be able to accurately

recognize all the food dishes in the uploaded photos. However, it is

an open problem [2, 17, 25, 33, 40] due to the intra-class diversity

in visual appearances and the complexity of background scenes.

This motivates the exploration of auxiliary information about the

food images to assist in the recognition process. One direction is

to use the detected food regions for classiication [11, 14, 40]. This

typically requires heavy manual eforts to label data and limits such

approaches to images taken in the lab settings. Another line of

research explores the descriptive data to food images, such as ingre-

dients. Chen et al. [3, 7] proposes a multitask learning algorithm

based on VGG [28] for the simultaneous food recognition and in-

gredient prediction. The visual and semantic features are therefore

aligned by the shared convolutional layers of VGG. However, this

algorithm uses ingredients as labels. Therefore, it does not explore

the semantic representation of food to take full advantage of the

multimodal associations between images and ingredients.

To address the aforementioned issues, this paper presents a cross-

modal alignment and transfer network (ATNet) to explore the se-

mantic counterpart of food images, i.e. ingredients, for efective

image-based food recognition. It follows a learning paradigm called

learning using privileged information (LUPI), which was irst intro-

duced by Vapnik et al. [31] to utilize the descriptive information

1http://www.foodlog.jp/en
2http://www.tadaproject.org/
3http://foodai.org/
4https://www.dietlens.com/
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Figure 1: Illustration to ATNet for food recognition under

LUPI paradigm. Information passing from images (drawn in

red arrows) is allowed for both training and testing, while

that from the ingredients (drawn in green dashed arrows),

i.e. the privileged information (PI), is only allowed for train-

ing. In addition to the conventional pipeline I 7→ f v (I) 7→ C,

ATNet builds the synchronized image and ingredient chan-

nels using autoencoders. This enables information passing

between visual and semantic channels using two lines of

cross-modal mappings: 1) a heterogeneous feature align-

ment for f v (I) 7→ L̂
v 7→ C and 2) a cross-modal mapping for

f v (I) 7→ L
v 7→t 7→ S

′ 7→ C
′. The inal prediction Ĉ is obtained

by a fusion of the predictions from both views C ⊕ C
′ 7→ Ĉ.

of primary data as an łintelligent teacherž to guide the learning

process of SVM+, i.e. the łstudentž, in the training stage. Such infor-

mation is called privileged information (PI) since it is not allowed

in the testing phase. LUPI regularizes the learning process in two

ways, i.e. similarity control and knowledge transfer [30]. Similar-

ity control models PI as a regularizer to guide the mapping from

the feature to the label space, while knowledge transfer allows the

łstudentž to learn and infer in the view of the łteacherž. LUPI has

been extended to other learning algorithms, such as ELM [39], in-

formation bottleneck theory [26] and CNN [34], which have been

applied to image recognition and other related tasks [26, 34].

Following this paradigm, ATNet uses the ingredients of food

images as PI, i.e. the łintelligent teacherž, and implements the func-

tions for similarity control and knowledge transfer of LUPI through

a two-stage cross-modal interaction. As illustrated in Figure 1, AT-

Net uses a pair of synchronized autoencoders to model the repre-

sentations of images I and ingredients S in the respective channels.

This ensures that the learned visual and the semantic embeddings

L
v
= f v (I) and Lt encode the information of their source data I and

S as much as possible. The irst interaction happens in a hetero-

geneous transfer network, where Lv and Lt are aligned to produce

a regularized visual embedding L̂
v using a deep transfer mapping

θ (Lv , Lt ). Notably, inding a suitable θ (Lv , Lt ) is challenging due

to the intrinsic heterogeneity of Lv and L
t in feature distributions.

Additionally, θ (Lv , Lt ) needs to align the paired image and ingredi-

ent features, rather than a match of distributions in conventional

transfer learning. To address this issue, a partial heterogeneous

transfer method is proposed. It irst inds a subset of features in

L
v and L

t that carries the shared information on food classes to

alleviate the problem of heterogeneity. Subsequently, it aligns these

features in a shared space, making the food class prediction C ob-

tained from the image channel L̂v 7→ C beneits from the semantic

embeddings in the ingredient channel. The second interaction is

(a) Fried beans (b) Beans with minced pork

Figure 2: Illustration to the representation power of images

and ingredients using dishes from two similar food classes.

Images from both (a) and (b) evidently show the intra-class

diversity and inter-class similarity, while ingredients can

perfectly distinguish both.

enabled by a cross-modal mapping Lv 7→ L
v 7→t from visual to the

semantic space. This allows the visual embedding Lv to make food

prediction in the ingredient channel from the view of łteacherž. The

gap between S′ and C′ in the mapping Lv 7→t 7→ S
′ 7→ C

′ is bridged

by the pre-acquired knowledge extracted from the training corpus.

It contains the statistics on the ingredient distributions P(si ) over

the food classes c j , including frequencies P(sp |c j ), co-occurrences

P(sp , sq |c j ), and the sequential dependencies P(sq |c j , sp ). The inal

prediction Ĉ is obtained by a fusion of the predictions drawn from

both the image and ingredient channels, i.e. C ⊕ C
′ 7→ Ĉ.

Experiments were conducted on the VireoFood172 [7] and the

Ingredient101 [5] datasets. We conducted ablation studies to evalu-

ate the efectiveness of each component of ATNet, compared ATNet

with the state-of-the-art food recognition algorithms, and used case

studies to illustrate the behaviors of ATNet in diferent success-

ful and failure cases. The results show that the proposed partial

heterogeneous transfer signiicantly improves the recognition per-

formance of diferent base CNN models. This indicates that ATNet

is agnostic to backbone CNN models. Besides, the multiview pre-

diction fusion further increased the robustness of ATNet.

In summary, We make three contributions in this paper:

(1) ATNet is the irst work that addresses the food recognition

problem using the LUPI paradigm. In the training phase, ATNet

explicitly take advantage of the multimodal representations

of images and ingredients for food recognition. While in the

testing phase, only images are needed as input.

(2) We propose a two-step method, called partial heterogeneous

transfer, to alleviate the intrinsic heterogeneity of the image

and ingredient embeddings. It shows promising experimental

performance (See Figure 5) and can be incorporated to other

tasks involving heterogeneous feature alignment.

(3) We explore the mapping between ingredient distribution and

food classes using three statistical measures, including ingredi-

ent frequencies, co-occurrences, and sequential dependencies. It

enables the use of visual embeddings to make food prediction in

the ingredient channel. This prediction serves as an additional

view to reine the inal food recognition performance.



2 RELATED WORK

This paper investigates using the ingredients of food as privileged in-

formation (PI) to regularize the learning process of the image-based

food recognition. Related work lies in the following directions:

• Food recognition: Early eforts on visual food recognition rely

on image processing, ranging from handcrafted features [2], food

region detection [33, 40], to deep learning features [17, 21, 32].

However, visual features have limited representation power due

to the diverse visual appearances of food (See Figure 2 for an in-

stance). Ingredients have been widely used for food analysis and

recipe retrieval [7, 8, 23, 24, 27], and have shown superior per-

formance when incorporated with images for food recognition

[7, 32]. However, Wang et al. [32] show that, when using con-

catenated features of images and ingredients, the performance

highly depends on the ingredient features. Chen et al. [7] propose

a multitask framework that uses image features from a shared

VGG to perform both food class and ingredient prediction.

• Learning using privileged information: The LUPI paradigm

[31] assumes a teacher-student learning scenario, where a teacher

can provide descriptive information (privileged information)

about a course (primary data) to assist a student (model) to learn

through the guidance of similarity control and knowledge trans-

fer [30]. It is distinct to multimodal analysis in that such privi-

leged information is not available in the testing phase. Despite

the use of diferent machine learning algorithms, it has been

widely-used to refer to studies that utilize auxiliary information

as a regularizer to enhance the learning of primary data, such

as using bounding box features to help image classiication [26],

using image captions to assist in multi-object detection [34], and

using auxiliary knowledge for person re-identiication [35ś37].

• Heterogeneous FeatureAlignment:Diferent frommultimodal

fusion [16], aligning features in heterogeneous domains usually

requires transfer learning [12, 20], which learns linear or non-

linear mappings to align data from both domains in a latent space.

Recent studies usually use a shared neural network to learn the

high-level features for heterogeneous data and put constraint

on their similarity, such as the widely-used KL-divergence, the

covariance matrix of feature distributions [29], and the loss from

generative adversarial network (GAN) [10]. However, these meth-

ods do not address the intrinsic heterogeneity of the data from

diferent domains.

3 PROBLEM FORMULATION

This paper investigates the use of ingredients to enhance image-

based food recognition under the LUPI paradigm. As shown in Fig-

ure 3, a signiicant diference between ATNet and the conventional

settings is the mapping Lv 7→ L
v 7→t that enables food prediction in

the ingredient channel. This makes ATNet explicitly take advantage

of the semantic embeddings to infer food classes in the semantic

space. Additionally, in contrast to multimodal food recognition, AT-

Net uses the ingredients S only in the training phase, so it requires

only images as input in the testing phase.

As shown in Figure 3, given a dataset including food images

I = {Ii |i = 1, ...,N } of J classes C = {c j |j = 1, ..., J } and the

corresponding ingredients S = {Si |i = 1, ...,N }, ATNet receives

data triplets (I, S,y) in the training phase, where y is class label, and

Figure 3: Illustration to diferent settings for food recogni-

tion. Image: Conventional image classiication;Multimodal:

Multimodal image classiication; Transfer: Transfer learn-

ing. ATNet: our model that learns a two-channel mapping

for food recognition. I: images, S: ingredients; E: external

data; Lv : visual embeddings; Lv+t : a fusion of visual and

semantic embeddings; L̂v : regularized visual embeddings;

L
v 7→t : semantic embeddings mapped from the image chan-

nel; C, C′, and Ĉ: food class indicators.

learns the pipeline of I 7→ L
v 7→ L̂

v 7→ Ĉ via a two-stage interac-

tion with the ingredient channel. It has four main procedures:

(1) Embeddingmodeling using autoencoders: ATNet indepen-

dently models the embeddings of I and S using two autoen-

coders: I 7→ L
v 7→ I

′, and S 7→ L
t 7→ S

′.

(2) Heterogeneous feature alignment: Considering the intrin-

sic heterogeneity of visual and semantic embeddings Lv and

L
t , ATNet inds the shared space in two steps: 1) learning two

subsets of features ÛLv and ÛLt that carry the information de-

scribing C and minimizing the KL-divergence KL ( ÛLt | | ÛLv ), and

2) aligning ÛLv and ÛLt in a shared space to obtain ÛLv 7→ L̂
v . Sub-

sequently, the food class indicator C from the image channel

can be obtained by L̂
v 7→ C.

(3) Cross-modal food prediction: Taking advantage of the au-

toencoder in the ingredient channel, a cross-modal mapping

enables Lv 7→ L
v 7→t 7→ S

′. The food prediction S
′ 7→ C

′ is

achieved by using the pre-acquired knowledge on food-ingredient

associations, including frequencies P(sp |c j ), co-occurrences

P(sp , sq |c j ), and sequential dependencies P(sq |c j , sp ).

(4) Multiview prediction fusion: The inal prediction on food

classes Ĉ is obtained by a fusion of the indicators obtained from

both the image and ingredient channels, i.e. C ⊕ C
′ 7→ Ĉ.

4 CROSS-MODAL ALIGNMENT AND
TRANSFER NETWORK

The cross-modal alignment and transfer network (ATNet), as de-

picted in Figure 4, has three main modules, i.e. a pair of synchro-

nized autoencoders for the image and ingredient channels and the

heterogeneous transfer network. This section illustrates the ive

key procedures of ATNet, including the autoencoders for the image

and ingredient channels, the heterogeneous feature alignment, the

cross-modal food prediction, and the multiview prediction fusion.

4.1 Autoencoder for Image Channel

As shown in Figure 4, the autoencoder for the image channel learns

the mapping I 7→ L
v 7→ I

′ using a CNN encoder f v (.) and a

CNN decoder дv (.). The encoder can be any state-of-the-art net-

works, such as VGG [28], ResNet [13], and wide residual network



Figure 4: The framework of ATNet. The pipelines for images, i.e. the primary data, and ingredients, i.e. the privileged infor-

mation, are drawn in red and green dashed arrows, respectively. In the training phase, ive lines of mappings are learned: 1)

I 7→ L
v 7→ I

′, 2) S 7→ L
t 7→ S

′, 3) Lv 7→ L̂
v 7→ C, 4) Lt 7→ L̂

t 7→ C, and 5) Lv 7→ L
v 7→t 7→ S

′. While in the testing phase, the inal

prediction Ĉ is obtained via a fusion of the predictions from both the image and ingredient channels C ⊕ C
′ 7→ Ĉ, which are

obtained via I 7→ L
v 7→ L̂

v 7→ C and L
v 7→ L

v 7→t 7→ S
′ 7→ C

′.

(WRN) [21, 38], and the decoder should reverse the operations of

the encoder. The autoencoder framework is used to learn L
v that

preserves the information of its input I, using a reconstruction loss:

Lv
rec = | |I′ − I| |F , (1)

where | |.| |F is the Frobenius norm.

4.2 Autoencoder for Ingredient Channel

Similar to image channel, the autoencoder for the ingredient chan-

nel learns the mapping S 7→ L
t 7→ S

′ using a pair of semantic

encoder f t (.) and decoder дt (.). Two designs for the semantic en-

coder and decoder have been investigated, as illustrated below.

4.2.1 Feed-Forward Neural Network. Using a feed-forward neural

network (NN) to implement f t (.) and дt (.) leads to a binary łbag-

of-wordž representation for S, so for ∀sm ∈ S, sm ∈ {0, 1}. This

makes Lt 7→ S
′ a multi-label prediction task and requires a sigmoid

activation function for S′. This autoencoder is optimized using a

reconstruction loss computed by the ℓ2 norm | |.| |2:

Lt
r ec = | |S′ − S| |2. (2)

4.2.2 Long-Short TermMemory. The second design uses long-short

term memory (LSTM) [15] as a building block for the semantic

encoder and decoder, in order to captures the semantics and depen-

dences between ingredients. It has three key steps:

(1) Sequential encoding of ingredients: Having the word em-

beddings of ingredients S = [s1, ..., sM ] where sm ∈ ℜ1×r , the

LSTM encoder incrementally processes the ingredient vectors

and output the same number of hidden vectors encoding the

past inputs. At time t , the LSTM encoder is deined as

ht = LSTM(st , ht−1) (3)

(2) Self-Attention for Ingredient Embedding:The self-attention

step fuses the output hidden vectors H = [h1, ..., hM ] to learn a

uniied embedding for ingredients, deined as

L
t
= AH, (4)

A = softmax (W2 tanh (W1H)), (5)

where A ∈ ℜ1×M is a trainable attention vector that evaluates

the importance of hm from d aspects, W1 ∈ ℜd×r computes

a d-dimensional attention for H, and W2 ∈ ℜ1×d fuses the d

types of attention to produce A.

(3) Decoding for Ingredient Prediction:Given the semantic em-

bedding Lt , the LSTM decoder follows the conventional image

captioning procedures [9] to decodem hidden vectors H, fol-

lowed by a non-linear mapping to incrementally predict the

ingredients S′ = [s′1, ..., s
′
M
], deined as

s
′
t = softmax (дt2(ht )), (6)

ht = LSTM(дt1([L
t
, ht−1]), ht−1) (7)

where [.] is the vector concatenation operator, and дt1(.) and

дt2(.) are non-linear mappings.

The autoencoder for the ingredient channel is optimized using a

binary cross-entropy loss for ingredient prediction, deined as

Lt
r ec = BCE (S′, S), (8)

where BCE (.) essentially measures the reconstruction error be-

tween the predicted ingredients S′ and the true ingredients S.

4.3 Heterogeneous Feature Alignment

The encoding-decoding frameworks for the image and ingredient

channels independently learn the visual and semantic embeddings

L
v and Lt . Considering the much stronger discriminative power of

the semantic embedding for food recognition, it is straightforward

to align the distributions of visual embeddings to their semantic

counterparts for improved performance, leading to the irst-stage

cross-modal interaction of ATNet. Heterogeneous transfer [10, 29]

is a commonly-used method for this problem, which aims to ind a

subspace where the visual and semantic embeddings overlap, i.e.



θv (Lv ) = θ t (Lt ). However, the intrinsic heterogeneity of image

and ingredient data makes it an intractable task.

To alleviate this problem, we propose a two-step method, called

partial heterogeneous transfer. It irst aligns the features in L
v and

L
t that carry the shared information on food class. Subsequently,

this method inds a shared space for them. It is based on the hy-

pothesis that Lv and L
t are described by two types of features,

where Lk1 (k = {v, t}) contains information on food class label and

L
k
2 contains information on their own styles [4]. Therefore, disen-

tangling L
v
1 and L

t
1 from L

v and L
t for alignment alleviates the

intra-modal diversity and help to discover the latent space to align

the heterogeneous features sharing the information on food class.

As shown in Figure 4, the heterogeneous transfer network irst

masks Lv and Lt (shown in grey) to allow only part of them, i.e. Lv1
and L

t
1, to be aligned for food recognition. Subsequently, two pairs

of non-linear mappings {θk1 (.),θ
k
2 (.)} (k = {v, t}) and a shared

linear mapping ϕ(.) are used to implement the mappings Lv1 7→ C

and L
t
1 7→ C. Three loss terms are used to learn the embeddings:

(1) Learning disentangled features Lk1 (k = {v, t}) is conditioned

on the cross-entropy loss CE (.) of both channels, deined as

Lv
c = CE (softmax (ϕ(L̂v )),y), (9)

Lt
c = CE (softmax (ϕ(L̂t )),y). (10)

(2) The loss of KL-divergence allows for a one-direction alignment

of ÛLv to ÛLt , deined as

LKL = KL ( ÛLt | | ÛLv ). (11)

It alleviates the cross-modal gap without breaking the distribu-

tion of the semantic embeddings.

(3) The ℓ2 norm aligns L̂v and L̂
t in a shared space, deined as

Laliдn = | |L̂v − L̂
t | |2. (12)

In addition, the shared ϕ(.) implicitly aligns L̂v and L̂
t by the

shared food class indicator.

4.4 Cross-Modal Food Prediction

In addition to the cross-modal feature alignment, the second stage

of interaction is enabled by the synchronized autoencoders, which

makes it possible to learn a cross-channel mapping for ingredient

prediction, i.e. Lv 7→ L
v 7→t 7→ S

′, as shown in Figure 4. Learning

such a mapping requires two loss regularizers, deined as

Lv 7→t = | |Lv 7→t − detach (Lt )| |2, (13)

Lv 7→S′ = CE (S′, S), (14)

where detach (.) removes the gradient for Lt from Lv 7→t , making

L
t from Lv 7→t a one-directional alignment from L

v to L
t .

Note that the prediction S
′ reveals the image-ingredient as-

sociation between the ingredients S and the image I, i.e. P(sp |I),

P(sp , sq |I), and P(sq |I, sp ) (P(sq |I, sp ) for LSTM decoder only). This

enables the mapping S′ 7→ C
′ by using the pre-acquired knowledge

on food-ingredient association, including frequencies P(sp |c j ), co-

occurrences P(sp , sq |c j ), and sequential dependencies P(sq |c j , sp ).

Speciically, the similarity between the image I and a food class

c j can be measured by a histogram matching. For example, given

the ingredient frequencies P(sp |I), the probability that I belongs to

the j-th class of C is deined as

Pf (c j |I) =
| |P(S|I) ∧ P(S|c j )| |1

| |P(S|I) ∨ P(S|c j )| |1
, (15)

where P(S|I) = [P(s1|I), ..., P(sM |I)] and P(S|c j ) = [P(s1|c j ), ...,

P(sM |c j )] are probability distributions. ∧ and ∨ are element-wise

fuzzy AND and OR operators such that a ∧ b = min(a,b) and

a ∨ b = max(a,b). | |.| |1 is the ℓ1 norm.

Note that, we typically use the Top-10 food classes and the Top-n

ingredients for the matching, where n is data-dependent. Moreover,

to take advantage of the sequential prediction of LSTM, the Top-

3 predictions for each word in a sequence are used. In a similar

way, Pco (c j |I) and Pseq (c j |I) can be obtained using P(sp , sq |I) and

P(sq |I, sp ), respectively. Therefore, the integrated indicator for food

classes P(c j |I) inferred from ingredient predicts can be computed

using a weighted fusion of the three views, deined as

P(c j |I) = αPf (c j |I) + βPco (c j |I) + γPseq (c j |I), (16)

where α , β , and γ are hyperparameters and α + β +γ = 1. Note that

if S′ is predicted using neural network, Pseq (c j |I) is unavailable. In

this way, the food class indicator in the ingredient channel C′
=

[P(c1 |I), ..., P(c J |I)] is obtained.

4.5 Multiview Prediction Fusion

Having the predictions on food classes from both the image and

ingredient channels, i.e. C and C
′, ATNet computes the inal pre-

diction Ĉ using their fused predictions, deined as

Ĉ = C ⊕ C
′
, (17)

where ⊕ can be any of the commonly used vector operators, such

as plus, multiplication, max-pooling, and min-pooling.

4.6 Training Strategies

ATNet is optimized using four groups of loss terms, including (a)

losses for the autoencoders of the image and ingredient channels,

i.e. Lv
rec and Lt

r ec , (b) losses for aligning visual and semantic em-

beddings, i.e. LKL and Laliдn , (c) losses for food classiication, i.e.

Lv
c and Lt

c , and (d) losses for cross-modal ingredient prediction,

i.e. Lv 7→t and Lv 7→S. So balancing their weights for optimization

is important and non-trivial. Therefore, we use two strategies to

guarantee a smooth training:

(1) Independently training the autoencoders irst: That is, be-

fore training ATNet, we irst train the autoencoders for the

image and ingredient channels independently. The pretrained

parameters are used to initialize the autoencoders of ATNet.

This ensures that Lv and L
t are trained to carry meaningful

information of image and ingredients.

(2) Weighting loss terms to match a ratio: The eight loss terms

are weighted to match a ratio. For example, the autoencoder

losses are weighted to be Lv
rec = Lt

r ec = 1, since ATNet

uses the pretrained parameters for autoencoders. Lv
c , L

t
c , and

Lv 7→S, i.e. the losses for the target goals, are weighted to be 10.

The losses regularizing the intermediate embeddings, i.e. LKL ,

Laliдn , and Lv 7→t are weighted to be 5.



5 EXPERIMENTS

5.1 Datasets

The performance of ATNet was evaluated on:

• VireoFood-172 dataset [7]: It has 110,241 Chinese food images

from 172 classes, which are of size 256×256 and manually anno-

tated with a vocabulary of 353 ingredient terms (three per image

on average). It is notable that the ingredients are made by visual

tagging, which contain mainly visually appeared ingredients in

the images. In the experiments, we followed the original paper’s

experimental setup [7] to use 66,071, 11,016, and 33,154 images

for training, validation, and testing, respectively.

• Ingredient-101 dataset [5]: It uses the images of the Food-101

dataset [6] and annotates them with nine ingredient terms per

image on average. This dataset has 1,000 western food images

of size 256×256 for each of the 101 classes and 446 ingredient

terms. The data split includes 68,175 images for training, 7,575

for validation, and 25,250 for testing.

5.2 Model Details

We investigated several base CNN networks for image channel:

(1) vgg19_bn: Pytorch implementation5 for 19-layer VGG [28]

with each convolutional layer followed by batch normalization.

(2) resnet50: Pytorch implementation6 for 50-layer ResNet [13].

(3) WRN50-2: Pytorch implementation7 for Wide Residule Net-

works (WRN) [38] using ResNet50 and a wide factor of 2.

(4) WISeR: In-house implementation for Wide-Slice Residual Net-

works (WISeR) [21], which adds a slide branch upon WRN50-2.

The designs in Section 4.2 are used for the ingredient channel:

(1) NN: In-house implementation of a four-layer fully-connected

network, each of which has the number of neuron equal to

the number of ingredients and is followed by a ReLU activa-

tion function. Lt and L
v have the same length. The four-layer

decoder uses a Sigmoid activation function to map L
t to the

ingredient indicator S.

(2) LSTM: The length of the embedding vectors for S and the hid-

den vector h also equals to that of Lv . d in self-attention, as

deined forW1 andW2 in Equation (5), is set to 5.

In experiments, ATNet consistently uses the batch size of 64 and

the learning rate of 1e-4 for vgg19_bn, 1e-3 for resnet50, and 5e-5

for other networks (decay by 0.1 for every ive epochs) using Adam

optimizer. Since all the base models are pretrained on ImageNet,

input images are normalized using the published ImageNet means

and standard deviations. Random horizontal lip is also used. In

the heterogeneous transfer network, the mappings for Lk1 7→ ÛLk

and ÛLk 7→ L̂
k (k = {v, t}) are two-layer networks with each layer

followed by a ReLU. The length for these intermediate embeddings

is 3/8 of Lv . The network for cross-modal mapping Lv 7→ L
v 7→t is

an eight-layer fully-connected network, each of which has the same

length to Lv and is followed by a ReLU. Regarding cross-modal food

prediction, Top-5 and -10 ingredients are used for the VireoFood-

172 (three ingredients in average) and the Ingredient-101 (nine

ingredients in average) datasets, respectively.

5https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
6https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
7https://github.com/szagoruyko/wide-residual-networks/tree/master/pretrained

Table 1: Classiication performance (in Top-1 accuracy (%))

of ATNet with diferent combinations of components on

VireoFood-172 dataset. D: food classiication using Lv1 7→ C;

AlignNN (LSTM ): Using L
t learned by NN (LSTM) for align-

ment; F: Using multiview prediction fusion.

Components
Base CNN Models

vgg19_bn resnet50 WRN50-2 WISeR

Origin 81.6 80.2 82.5 82.8

+ D 81.7 80.2 82.4 82.6

+ D +AlignNN 83.7 83.6 85.3 85.2

+ D +AlignLSTM 84.2 83.9 85.4 85.6

+ D +AlignNN + F 84.9 84.8 85.9 86.2

+ D +AlignLSTM + F 85.3 85.0 86.1 86.2

5.3 Ablation Study

5.3.1 Evaluation on Base Models. We irst evaluate the perfor-

mance of the base models. As observed in the row łOriginž of

Table 1, all four base models achieve comparably good performance.

Especially, vgg19_bn outperforms resnet50 at the cost of eiciency.

Its network size is nearly six times larger than that of resnet50.

Additionally, dense ilters signiicantly improve the visual repre-

sentation. WRN50-2 and WISeR double the ilters of resnet50. This

leads to a much better performance.

5.3.2 Evaluation on Heterogeneous Feature Alignment. As shown

in the row ł+Dž of Table 1, using part of features for classiication

does not lead to an obvious drop in performance. This demonstrates

that the base models can learn to compress the information on food

class into a subset of features. Adding the component of heteroge-

neous feature alignment signiicantly improves the performance of

all base models. Notably, the performance using LSTM as semantic

encoder consistently outperforms that using NN, demonstrating

the efectiveness of learning the semantics dependency of ingredi-

ents. Interestingly, resnet50 achieves a comparable performance to

vgg19_bn after the alignment. This demonstrates the efectiveness

of ATNet in bridging the semantic gap of the visual embeddings.

To investigate the reason, we visualize the visual and semantic

embeddings that are obtained in diferent steps of ATNet with

vgg19_bn and LSTM. PCA was chosen instead of t-SNE to map

the embeddings to 2D space, since a linear transformation can

preserve the domain-speciic characteristics, such as scales, of the

heterogeneous embeddings. As shown in Figure 5(a), the visual

and semantic embeddings from autoencoders, i.e. Lv and L
t , have

a signiicantly diferent distributions in the 2D space, caused by

domain shift. The irst step of partial heterogeneous transfer, as

deined in Equations (11), successfully maps the visual embedding

to align with its semantic counterpart in the same scale, as shown in

Figure 5(b). The inal aligned embeddings using ATNet are shown

in Figure 5(c), where all of the paired embeddings are better aligned.

For further comparison, Figure 5(d) depicts the aligned embeddings

using the deep coral method [29]. It shows that directly aligning

L
v and L

t changes their original scales and therefore does not

preserve their distributions in the respective channels, leading to

a downgraded performance. The above analysis demonstrates the

efectiveness of the proposed partial heterogeneous transfer method

for heterogeneous feature alignment.
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Figure 5: Visualization for the visual and semantic embeddings of 30 randomly-selected testing samples. (a) Lv and L
t obtained

by autoencoders; (b) ÛLv and ÛLt obtained by the irst step of ATNet’s partial heterogeneous transfer; (c) L̂v and L̂
t obtained by

the second step of ATNet’s partial heterogeneous transfer; (d) L̂v and L̂
t obtained by aligning L

v and L
t using deep Coral.

5.3.3 Evaluation on Multiview Prediction Fusion. The last two rows

of Table 1 show that fusing the food predictions made from the

image and ingredient channels, i.e. C and C
′, leads to a further

improvement upon heterogeneous feature alignment. Note that

the prediction C
′ is also a fusion of three indicators obtained us-

ing diferent types of food-ingredient associations, i.e. frequencies

P(sp |c j ), co-occurrences P(sp , sq |c j ), and sequential dependences

P(sq |c j , sp ), as deined in Equation (16). Therefore, this section, us-

ing ATNet with vgg19_bn and LSTM as an example, evaluates the

efects of diferent fusion operators for them.

Efects of Weights for Ingredient-to-Food Indicators

First, we evaluate the importance of the three types of food-ingredient

associations in food recognition. It is achieved by measuring their

inluences on the classiication performance of the fused food indi-

cators. Since sequential dependences P(sq |c j , sp ) do not apply to the

NN-based autoencoder, the importance of P(sp |c j ) and P(sp , sq |c j )

are evaluated irst. As observed in Figure 6(a), using P(sp , sq |c j )

solely achieves better performance than using P(sp |c j ) for both NN-

and LSTM-based autoencoders, indicating the stronger discrimi-

native power of ingredient co-occurrences. Additionally, the best

performance is usually obtained when α and β are equally weighted,

demonstrating their information complementarity. The importance

of P(sq |c j , sp ) is revealed in Figure 6(b). As observed, the best per-

formance is achieved at γ = 0.2, followed by a signiicant drop.

This means that the sequential dependencies of ingredients carry

helpful information, but it solely is not suicient.

Efects of Operators for Multiview Prediction Fusion

Similarly, this section illustrates the efects of diferent operators

for the fusion of food class indicators from the visual and ingredient

channels, i.e. C and C
′, as deined in Equation (17). In the experi-

ments, we selected the indicator of Top-10 classes for reinement,

since the visual channel of Alignment can capture the true labels

of over 96% of images in the Top-5 predicted classes.

As shown in Table 2, four operators have been investigated to

fuse the class indicators C and C
′ obtained from the image and

ingredient channels, respectively. It is observed that operating on

raw values may lead to a drop in performance, which is caused by

domain shift. As such, the softmax function is used to make C and

C
′ in the same scale, leading to a consistent improvement for all

operators. The best performance is achieved by the S(min) operator,

which works by decreasing the inconsistent predictions.
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Figure 6: Illustration to the efects of weights α , β , and γ for

S
′ 7→ C

′. (a) α + β = 1 and γ = 0. (b) α = β = 0.5, and C
′ is

normalized by C
′/(α + β + γ ).

Table 2: Performance (in Top-1 accuracy (%)) of ATNet using

diferent fusion operations. +,×,max, and min are element-

wise operators on C and C
′. S(.) means performing sotmax

to indicators before the operator.

C C
′ + × max min S (+) S (×) S (max) S (min)

84.2 77.9 83.8 84.7 84.4 83.5 84.9 85.1 85.0 85.3

5.4 Performance Comparison

This sections presents the performance comparison on food recog-

nition between ATNet and the state-of-the-art methods, including

four CNN networks (resnet18, resnet50, vgg16_bn, and vgg19_bn)

that are commonly used for food recognition [1, 19, 32], ARCH-D

[7], WRN50-2 [38], and WISeR [21]. The implementations of all

algorithms except ARCH-D are illustrated in Section 5.2. ARCH-D

is an in-house implementation based on Pytorch’s vgg16_bn im-

plementation, so its setting follows that of vgg19_bn in Section 5.2.

Notably, it is the only algorithm that uses ingredients to aid the

image-based food recognition, using a multitask learning approach.

ATNet uses LSTM for the ingredient channel and uses min(.) with

softmax as the fusion operator.

As reported in Table 3, ATNet consistently improves its base

models on both datasets. This demonstrates the efectiveness of the

proposed LUPI framework for food recognition. Comparing with

the performance of base models, ATNet alleviates their semantic

gap and makes them achieve comparable performance on both

datasets. This indicates the successful alignment of the visual em-

beddings to the semantic space of the ingredient channel. Notably,

the improvement over WRN50-2 and WISeR is less than their base

model, i.e. resnet50. Besides, ATNet does not bring a signiicant
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Figure 7: Case Study onATNet in successful and failure cases. Results from image and ingredient channels are shown in red and

green dashed boxes, respectively. Correct predictions are in boldface. (a) Prediction on łCripsy sweet & sour pork slicesž made

of łChinese Parsleycorianderž, łFried lourž, and łTenderloin slicesž. Both channels make correct prediction. (b) Prediction on

łSour Beef Soupž made of łCrushed pepperž, łSliced Fatty Beefž, łWaterž, and łEnoki mushroomž. Only image channel makes

the correct prediction. (c) Prediction on łSalt Green Tenderž made of łCrushed pepperž, łCrushed garlicž, and łChinese Kalež.

Only ingredient channel makes correct prediction. (d) Prediction on łSauteed Spicy Porkž made of łBlack fungusž, łStreaky

pork slicesž, łSteamed breadž, and łGarlic leavesž. Both channels make the wrong predictions.

Table 3: Performance comparison of food recognition algo-

rithms (in Top-1 and Top-5 accuracy (%)) on VireoFood-172

and Ingredient-101 datasets.

Model
VireoFood-172 Ingredient-101

Top-1 Top-5 Top-1 Top-5

resnet18 77.1 93.1 79.6 92.9

resnet50 80.2 93.8 82.1 94.3

vgg16_bn 80.4 95.3 80.7 93.4

vgg19_bn 81.6 95.7 81.3 93.7

ARCH-D [7] 82.1 95.9 83.7 96.2

WRN50-2 [38] 82.5 96.1 84.6 96.5

WISeR [21] 82.8 95.6 85.1 96.6

ATNetvgg19_bn 85.3 96.5 86.4 96.8

ATNetresnet50 85.0 96.2 86.7 96.6

ATNetWRN50-2 86.1 96.6 87.3 96.7

ATNetWISeR 86.2 96.4 87.1 96.5

improvement to both their Top-5 accuracies. This is likely due to

the low distinguishing power of the visual embeddings produced

by the CNN encoder, which may hinder both its alignment with

the semantic embedding and its mapping to the ingredient channel.

We will provide an in-depth analysis in the following section, and

an evidence is revealed in Figure 7(d).

5.5 Case Study

This section provides an in-depth analysis on the behaviors of

ATNetWRN50-2, as discussed in Section 5.4, in various successful

and failure cases. The samples are randomly selected from the

testing set of the VireoFood-172 dataset.

As observed in Figure 7(a), a perfect prediction in the image

channel also leads to a correct prediction of ingredients and food

class in the ingredient channel. These enable a robust decision

fusion. On the other hand, when the ingredients in an image are

diicult to identify, the ingredient channel may make incorrect

predictions with lat values. In this case, ATNet relies on the image

channel to ilter the classes with incorrect ingredients, as shown in

Figure 7(b). In the case that the ingredients are clearly visible while

the predictions of the image channel are uncertain (See Figure 7(c)),

the prediction of food class of the ingredient channel can help

to depress the wrong classes. Lastly, Figure 7(d) depicts the case

when the visual embedding is not representative for the correct

class. This leads to failure in food recognition, and the prediction

values, either from the ingredient channel or the fused prediction,

are low. The above analysis reveals the behaviors of ATNet using

cross-modal mapping to help food recognition in the image channel.

ATNet is efective especially when the ingredients are visible in the

images. Wrong predictions in ingredient channel is not harmful

unless it also happens in the image channel. This demonstrates the

efectiveness of ATNet on food recognition.

6 CONCLUSIONS

This paper presents a cross-modal alignment and transfer network

(ATNet) under the paradigm of learning using privileged informa-

tion (LUPI) to assist in the image-based food recognition. It uses

food ingredients as PI and implements the similarity control and

knowledge transfer of LUPI using a two-stage cross-modal inter-

action. The interaction for similarity control aligns the visual and

semantic embeddings encoded from images and ingredients. To

alleviate their intrinsic heterogeneity, we propose a partial het-

erogeneous transfer, which learns to align the features in both

embeddings that carry information about their shared food classes,

rather than those carrying information on their own styles. The in-

teraction for knowledge transfer is achieved by mapping the visual

embedding to the ingredient channel for food class prediction.

Despite the achievements of ATNet, future work can be further

explored in two directions. First, stronger transfer learning tech-

niques that better align the visual embeddings to the semantic space

can signiicantly improve the performance. Second, a well-deined

knowledge graph on food-ingredient associations can further en-

hance food prediction in the ingredient channel.
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