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Abstract

The long-tailed distribution is widespread in data,
learning from long-tailed images may lead the classifi-
cation model to concentrate more on the head classes
that occupied most samples, while paying less attention
to the tail classes. Existing long-tail image classification
methods try to alleviate the head-tail imbalance majorly
by re-balancing the data distribution, assigning the op-
timized weights, and augmenting information, but they
often get in trouble with the trade-off on the head and
tail performance which mainly caused by the poor rep-
resentation learning of tail classes. To address the above
problems, we introduce descriptional words of images as
cross-modal privileged information and propose a cross-
modal enhanced method for long-tailed image classifi-
cation, termed CMLTNet. The CMLTNet improves the
learning of intra-class similarity of tail-class represen-
tations by the cross-modal alignment and captures the
difference between head and tail classes in the seman-
tic space by the cross-modal inference. After the fusion
of the above information, CMLTNet achieves overall
better performances than the benchmarking long-tailed
learning and cross-modal learning methods on long-
tailed cross-modal datasets NUS-WIDE and VireoFood-
172. We further study the effectiveness of proposed
modules through ablation experiments; from case study
of feature distribution, we demonstrate that the model
has learned better representation of tail classes, and in
the experiments of model attention we find that CMLT-
Net may help to learn some rare concepts in the tail class
through the mapping to the semantic space.

Keywords: Long-tailed classification, Cross-modal
learning, Representation learning, Privileged information

1. Introduction

The long-tailed phenomenon in data distribution means
that most samples belong to a small number of head classes,
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Figure 1. Visualization of the distribution in visual and semantic
feature spaces, (a) is the distribution of visual features, in which
the distribution among classes is messy, and the tail features are
mixed in the head classes; in the semantic space (b), the intra-class
distribution of the head is more concentrated, and the tail features
are distributed in specific regions that can be distinguished clearly.

while many tail classes only occupy a small part of samples.
Learning image classification from long-tailed data tends to
lead the model dominated by the head and get poor opti-
mization on the tail. Therefore, existing works mainly try
to re-balance the data distribution [37, 13] and re-assign the
optimization weights to compensate the tail [7, 1, 6], but
the lacking of diversity in tail-class information may conse-
quently cause trade-off between the head and the tail perfor-
mance. So recent works propose to apply data augmentation
[4, 36, 24], adversarial training [16, 14], and transfer learn-
ing [19] to supplement information of tail classes. How-
ever, these methods in visual modality have the dilemma of
injuring the head or exacerbating the imbalanced situation,
since they still play a role of re-balancing and the represen-
tation learning has not been well improved, which hinders
the way to solving problems like the interference of back-
ground noise which may be more serious in tail classes, so
novel ideas are needed to alleviate the above problems.
Due to the popularity of multi-modal data, images in re-
ality are usually accompanied by semantic information such
as tags or description words, which are easier to distinguish
main body of images, as shown in Figure 1. So introducing
cross-modal semantic information as supplementary in the
training process, i.e., the Learning Using Privileged Infor-
mation (LUPI) paradigm [31, 30], is promising to improve
the representation learning of model. Works in this area



are mainly divided into cross-modal constraint methods and
cross-modal alignment methods. Cross-modal constraint
methods utilize semantic information as the extra constraint
on local or global feature extraction [2, 3, 23, 9]; and cross-
modal alignment methods make the range [22, 27] or distri-
bution [15, 17] of visual and semantic features more similar.
However, existing works achieve limited performance gains
since the uncontrollable constraints and the modal hetero-
geneity. In addition, since the long-tailed distribution also
exists in semantic modality, the bias may be further exacer-
bated in the cross-modal learning.

To address the aforementioned problems, we propose
a Cross-Modal learning method CMLTNet to improve the
learning of visual representations in long-tailed image clas-
sification. Through the introduction of cross-modal se-
mantic information, the visual representations are enhanced
which achieves the upgrading of both the head and the tail
classes. The overall idea of CMLTNet is shown in Figure 2,
which consists of three main processes, the Alignment be-
tween cross-modal information, the Inference from visual
to semantic space, and the cross-modal information Fusion.
To make full use of the information in the semantic modal-
ity during training, we first propose feature-level alignment
to form the cluttered visual features more similar to the fo-
cused and distinguishable semantic features. The alignment
has limited effects due to the modal heterogeneity, so in
another aspect, we encourage the model to learn to map
from visual to semantic space, that is, visual-semantic in-
ference, finding the meaningful semantic information from
visual features to achieve communication between modali-
ties. Finally, the representation learning of the model is en-
hanced from the fusion of distribution alignment and visual-
semantic inference, which improves the intra-class similar-
ity and inter-class discrimination learning to achieve better
performance on long-tailed image classification.

In experiments, we demonstrate the effectiveness of
CMLTNet on two cross-modal long-tailed datasets NUS-
WIDE and VireoFood-172. The experimental results show
that our method can effectively enhance the prediction of
the whole and especially the tail classes without the loss of
the head. In ablation study, we analysis the effectiveness
of cross-modal alignment and inference and the effects of
different fusion strategies. Further, we exhibit the enhance-
ment effect of CMLTNet on representation learning and the
improvement of the model’s attention to long-tailed data in
cross-modal learning through case studies.

In summary, the main contributions of this paper are:

* We propose CMLTNet to effectively improve repre-
sentation learning for long-tailed image classification,
thus alleviating the issue in vision. This is a pioneering
work which explores incorporating cross-modal privi-
lege information.
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Figure 2. CMLTNet improves representation learning for both
head (blue triangles) and tail (red circles) classes in long-tailed
image classification. While the visual space has dispersed features
and head dominates decision-making, the semantic space offers
clear representations from description words. CMLTNet aligns
feature distribution and maps visual space to semantic space, pro-
moting semantic learning during training.

* We analyze the strengths and limitations of cross-
modal learning methods on long-tailed image classi-
fication. On this basis, this paper proposes a model-
agnostic “alignment-inference-fusion” framework and
demonstrates its advantages in representation learning
and filtering visual noise.

2. Related works
2.1. Long-tailed Image Classification

Works about long-tailed image classification mainly im-
prove on the data level and the optimization level. Among
the data-level methods, re-sampling methods [37, 13] as-
sign weights of class-sampling to re-balance the data dis-
tribution; curriculum learning-based methods re-adjust the
training process from easy to hard [32, 34]; methods above
may cause over-fitting at the tail because the lacking of
information diversity, so data augmentation-based meth-
ods are proposed to diverse the tail classes, such as sam-
ples interpolation [4] and background replacement [36, 24].
In addition, adversarial training-based methods [16, 14]
are also effectively augmenting information by introduc-
ing perturbations. Works of optimization-level attempt to
reduce the bias during model optimization, such as loss
adjustment[ 18, 1, 6] and class re-weighting[7].

2.2. Cross-modal Learning for Image Classification

Cross-modal learning methods using semantic informa-
tion as privileged information (LUPI) [31, 30] for image
classification can be mainly divided into two approaches,
the implicit cross-modal constraint-based methods and the
explicit cross-modal alignment-based methods. The Cross-
modal constraint-based methods introduce semantic infor-
mation as the local[3, 23] or global[2, 12, 9] constraints by
mapping the visual feature into semantic predictions, which
enhance the extracting of semantic information from visual



features; while the methods of cross-modal alignment ap-
ply similarity loss such as KL-Divergence[22], covariance
matrix [27] between visual features and privileged seman-
tic features or between the feature distributions [15, 17] to
guide the model to filter the noise in the visual feature space.

3. Method

3.1. Overview

To make full use of the cross-modal information in the
training phase and improve the learning of long-tailed im-
ages, we constructs an “alignment-inference-fusion” learn-
ing framework in CMLTNet, as shown in Figure 3.

In the Visual Representation Enhancement module,
cross-modal alignment is used to improve learning of intra-
class representation. The modal heterogeneity limits align-
ment effects, so in the Cross-modal Representation Infer-
ence Module, semantic information is used as a constraint
for mapping visual features to semantic space. This ef-
fectively learns semantically meaningful visual-semantic
knowledge and reduces inter-class confusion from visual
noise. Finally, the Cross-modal Information Fusion mod-
ule fuses features learned from different channels to obtain
debiased information, and thus improve long-tailed image
classification results.

3.2. Visual Representation Enhancement Module

As mentioned in Section 3.1, the main target of the Vi-
sual Representation Enhancement Module is to make the
extracted visual features closer to the semantic features at
the distribution level during classification. For input images
V = {v;|i = 1,..., N} and their corresponding description
words § = {s;]i = 1, ..., N}, the model first extracts visual
features F, = p,(V) and semantic features F5 = p;(S)
through visual feature extractor p,(.) and semantic feature
extractor ps(.) . Then the model tries to find a shared space
that minimizes the distance of distribution of F,, and F:

min{Distance(a,, (F,), as(Fs))} (1)

where Distance(.) means the measurement of distance like
L, Norm; «,, and o are shared space mapping for visual
and semantic features, we applied Linear projection fol-
lowed by ReLu activation in the CMLTNet.

In CMLTNet, the aligned features mapped by shared
space F,,, = o, (F,) and F,, = «o,(F) achieves the goal
of Equation 1 through KL-Divergence, making visual fea-
tures closer to semantic features in shared space:

Lezplicit = KLD(Softmax(F,,), Softmax(Fy,))  (2)

In the above process, visual and semantic features are
mapped into shared space to form alignment features F,,, =

ay(F,) and Fy, = a,(F;), by imposing classification con-
straints, the features of two modalities are further optimized
in the direction of improving the classification, thus forming
Implicit constraints, the loss function is:

Eimplicit = Ecls(f(Fva)y C) + £cls(f(Fsa)a C) (3)

where L., is the classification loss which can be the
Cross-Entropy in the single-label classification task and the
Binary Cross-Entropy in the multi-label classification. The
C means the labels of samples and f(.) is the shared class
mapping for both visual and semantic features.

3.3. Cross-modal Representation Learning Module

The visual representation is enhanced by alignment, but
the modal heterogeneity limits the effectiveness, thus the vi-
sual noise and error propagation still serious. Therefore, we
design a cross-modal representation learning method infer
features in visual modality to semantic modality.

To extract semantically meaningful visual information,
we need to find a cross-modal transfer mapping from visual
to visual-semantic features, i.e., F,_,; = Trans(F,) which
can well correspond to description words S. The target of
cross-modal inference is:

min{Error(g(F,-s),S)} “4)

where Error(.) means the error of words predictions and
g(.) is the predicted mapping of words. In CMLTNet,
we applied two blocks of Linear projections followed by
a LeackyReLu activation as the modal-transfer mapping
Trans(.), and the g(.) is the Linear projection.

To achieve the goal of Equation 4, the semantic words S
are used as targets for word predictions, and semantic fea-
tures F are also used for improving the cross-modal trans-
fer mapping:

‘Ctransfer = BCE(g(F’U—)s)a 8) + ﬁt'MSE(F'U—)m Fs)
)
where BCE(.,.) is the Binary Cross-Entropy loss,
MSE(.,.) is the Mean square Error loss, and f3; is the co-
efficient of transfer loss, and the range is shown in Section

The semantic predictions P, = g(F,_ ) contains
words probability in the given images, and for using these
information to enhance the representations learned in visual
space, CMLTNet encodes P,_, ; as embeddings:

E; = 6(Embed(Topk(P,—s))) (6)

where Topk(.) is the operation to chose top-k predicted
words, E'mbed(.) is the word embedding, and 6(.) is the
operation of embedding fusion, we will show the results of
using linear and mean embedding fusion in Section 4.4.
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Figure 3. The schematic diagram of CMLTNet, description words S of the images V) are introduced in the training phase, on the one hand,
they are formed as cross-modal semantic feature F to help the alignment learning from visual features F,, to visual aligned features F,,, in
a shared space; on the other hand, words S help visual features F,, to better transfer to semantic space and infer semantic embeddings E.
Finally the learned features F,,, and embeddings are fused as augmented features F. 4. Through the training of the CMLTNet framework,
the bias information in learning long-tail images is alleviated, thereby improving the image classification ability in the test.

The learning process of embedding is constrained by its
prediction of the class:

Eembed = ﬁcls (fe (Es)a C) (7)
where f.(.) is the class mapping of semantic embeddings.
Therefore, the overall loss of cross-modal inference is:

£infe'r = ACtransfer + ACembed (8)
3.4. Cross-modal Information Fusion Module

The representations of visual features are strengthened
by alignment, but there is still an ill-posed between head
and tail classes. After cross-modal inference, visual noise
in the vision is filtered, but the loss of information brings
a dropping of performance. Therefore, we propose to fuse
the two parts of the features to combine the advantages of
the two modalities:

Foug = Fusion(¢(Fya), (Es)) )

where Fusion(.,.) is a feature-level operation like feature
concatenation, add, min, and max operation, and ¢(.) is a
linear layer followed by LeakyReL U activation.

The classification constraint is applied in the fusion:

'C'fusion = £cls (ff (Faug)a C)

where L. is CE loss for single-label classification or BCE
loss for multi-label classification, and f¢(.) is the fused fea-
ture to class mapping.

(10)

3.5. Training Strategy

3.5.1 Multi-stage Training

In order to improve the training efficiency, the training of
CMLTNet can be divided into the following stages accord-
ing to the aforementioned process:

o Stage 1: Training the feature extractor and shared
space mapping net in visual and semantic modality,
using Limplicit and Legpiicir as constraint, with an ad-
justable factor y; on L piicit-

o Stage 2: Freezing the networks in Stage 1, and train-
ing the transfer network, visual-semantic mapping net-
work, and the embedding using L;y, f¢, as loss.

 Stage 3: Freezing the networks in Stage 1 and Stage 2,
and training the linear net and class mapping in fusion
by the constraints of £ fysion.

3.5.2 One-stage Training

CMLTNet can be trained end-to-end by combine the above
losses, but in this case, parameter adjustment needs to be
careful, we will provide some choices in Section 4.2.2:

L= Vi~ Eimplicit + £ewplicit +e £infer + qusion (11)

where v; and v, are weight factors of losses.



Table 1. Statistical details of NUS-WIDE and VireoFood-172. IR
is the short of Imbalance Ratio and the # indicates the categories.

Datasets #Classes | #Words | IR (Train) | IR (Test)
NUS-WIDE 81 1000 1083.62 1465.70
VireoFood-172 172 353 5.57 5.50

4. Experiments
4.1. Datasets

Experiments are taking on two cross-modal long-tailed
datasets as shown in Table 1, where the Imbalance Ratio
(IR) [!, 7] measures the degree of imbalance in datasets,
i.e., IR = max,;n;/min;n;, which means the ratio of the
sample amount in most sampled class and the least sampled
class.

NUS-WIDE [5]: a multi-label classification dataset con-
taining images in 81 classes. Each image corresponds to
several texts, and the total number of word classes is 1000.
We follow previous works[5, 28, 29] to split the train/test
set and remove samples missing labels or text. Finally,
203,598 samples remain, including 121,962 training sam-
ples and 81,636 testing samples, with an IR of 1083 in the
training set and 1465 in the test set.

VireoFood-172 [2]: a single-label classification dataset
with a total of 99,225 images corresponding to 172 cate-
gories. Each image corresponds to multiple texts, and the
total number of classes is 353. Among them, there are
66,071 samples in the training set and 33,154 samples in
the test set. The IR in the training set is 5.57 and the IR in
the test set is 5.50.

4.2. Experimental Settings

4.2.1 Evaluation Protocol

Following the previous works about multi-label long-tailed
classification [33, 10], the mean Average Precision (mAP)
is adapted on the multi-label dataset NUS-WIDE to evaluate
the performance of algorithms. We report the performances
in three disjoint class-subsets that divided by the frequency
of occurrences in training set like the settings in [20]: Head
classes (classes each with over 5000 occurrences), Medium
classes (classes each with 2000 to 5000 occurrences) and
Tail classes (classes each under 2000 occurrences).

We use the Accuracy score for evaluating the classifi-
cation performance of algorithms on single-label dataset
VireoFood-172 as previous works [16, 20] did. As men-
tioned in the protocol settings of NUS-WIDE, we also di-
vide classes of VireoFood-172 into three disjoint class-
subsets: Head classes (classes each with over 500 occur-
rences), Medium classes (classes each with 300 to 500 oc-
currences) and Tail classes (classes under 300 occurrences).

4.2.2 Implementation Details.

For all the algorithms, we set batch size as 64, and the inter-
val of learning rate decay is 4 epochs and each model decays
3 times for 0.1 then training for an extra epoch. The opti-
mizer is Adam with weight decay selected from [1e-3, Se-4,
2e-4, 1e-4], the learning rate is chosen in the range from Se-
5 to 5e-3. For the comparative long-tailed learning meth-
ods, we chose the 8 in Class-Balanced (CB) [7] Resample,
Reweight, and LDAM-DRW [I] from 0.9 to 0.9999; For
comparative corss-modal learning methods, we set the di-
mension of latent space as 2048. As for the parameters in
CMLTNet and its variants, the coefficient of losses Baiign.
Btransfer are selected from [0.1, 0.2, 0.5, 1.0, 1.5, 2.0]; and
for the one-stage training, the weight of loss 3;, ~v; and ;
are chosen in [0.1, 0.5, 1.0, 2.0], and the dimension of latent
space is 300.

4.3. Performance Comparison

Comparison experiments are conducted among visual
models, cross-modal learning methods, and long-tailed
learning methods. The Visual Backbones include pretrained
basic networks ResNet-18, ResNet-50 [11], and VGG [26],
two improved networks WRN [35] and WISeR [21] based
on ResNet-50, and the recent Transform-based backbone
ViT-B [8]; Long-tailed Learning methods include Focal
loss [18], Class-balanced (CB) [7] resample and reweight,
and LDAM-DRW [1]; The Cross-modal learning methods
include our in-house implemented constraint-based meth-
ods ARCH-D [2], CMRR [3], and CMFL [9], and align-
based methods ATNet [22], methods above use pretrained
ResNet-50 as the backbone. From the Table 2 we have fol-
lowing observations:

* There is an obvious head-to-tail deviation in the visual
Backbones, including the convolutional network and
transform-based network, and the improved backbones
bring limited improvements on the tail on NUS-WIDE
with higher IR. The performance of medium classes is
higher than the head on the VireoFood-172 since there
are more confusing classes in the head.

¢ CMLTNet has achieved comparable or better perfor-
mance with benchmarking long-tailed learning and
cross-modal learning methods under the same visual
backbone and simultaneously improving the perfor-
mance of head, medium, and tail classes.

* CMLTNet achieves more stable performance gains
across datasets in different domains compared with
other methods. And it is worth noting that on the NUS-
WIDE, CMLTNet using ResNet-18 can outperform
most cross-modal learning methods using ResNet-50,
indicating that CMLTNet combines beneficial infor-
mation in different modalities in an effective way.



Table 2. Comparative results on multi-label NUS-WIDE report the mAP scores, and Accuracy scores are reported on the single-label
VireoFood-172. In the table, All, Head, Med, and Tail represent the results on the whole, the head, the medium, and the tail classes.

NUS-WIDE VireoFood-172
Method Model All Head | Med | Tail All Head | Med Tail
ResNet-18 0421 | 0681 | 0508 | 0332 | 0.782 | 0.784 | 0.785 | 0.767
ResNet-50 0444 | 0692 | 0536 | 0357 | 0817 | 0817 | 0.824 | 0.798
Visual VGG 0436 | 0.694 | 0531 | 0346 | 0811 | 0.805 | 0.820 | 0.801
Backbone WRN 0451 | 0711 | 0546 | 0361 | 0.825 | 0.817 | 0830 | 0.823
WISeR 0451 | 0711 | 0544 | 0362 | 0.828 | 0832 | 0.829 | 0819
ViT 0455 | 0709 | 0544 | 0367 | 0836 | 0829 | 0.846 | 0.830
Focal(ResNet-50) 0452 | 0714 | 0.569 | 0356 | 0.821 | 0.821 | 0.827 | 0.801
Long-tailed CB Resample(ResNet-50) | 0467 | 0.691 | 0518 | 0397 | 0.812 | 0.802 | 0.821 | 0811
Learning CB Reweight(ResNet-50) | 0459 | 0.695 | 0.534 | 0.379 | 0.820 | 0.817 | 0.826 | 0.810
LDAM-DRW(ResNet-30) | 0470 | 0.701 | 0548 | 0392 | 0.833 | 0.826 | 0840 | 0.825
ATNet(ResNet-50) 0458 | 0693 | 0531 | 0380 | 0.820 | 0.824 | 0.837 | 0814
ARCH-D(ResNet-50) 0450 | 0.695 | 0532 | 0366 | 0.825 | 0.824 | 0.833 | 0.804
Crossmodal CMRR (ResNet-50) 0450 | 0.686 | 0508 | 0375 | 0819 | 0815 | 0.824 | 0812
Loarning CMFL(ResNet-50) 0478 | 0706 | 0564 | 0398 | 0.831 | 0.829 | 0.833 | 03816
CMLTNet(ResNet-18) 0478 | 0702 | 0539 | 0405 | 0.792 | 0.785 | 0.800 | 0.781
CMLTNet(ResNet-50) 0486 | 0707 | 0548 | 0413 | 0833 | 0825 | 0842 | 0823
CMLTNet(ViT) 0.494 | 0715 | 0557 | 0.420 | 0.843 | 0.837 | 0.850 | 0.832

* For the long-tailed learning methods, to bring an over-
all improvement, the head classes need to get more
optimization; otherwise, it is easy to weaken the
head while improving the tail. The CB Resample
on VireoFood-172 is an example, while the tail is in-
creased by 1.2%, the medium and head are weakened
by 0.3% and 1.8%, which finally brings a 0.6% reduc-
tion to overall. The focal loss encountered the problem
of increasing the head-to-tail gap on NUS-WIDE.

* Cross-modal learning methods generally improve the
tail predictions, but effects are different between
datasets. For example, since the deception words
are diversity inner class on NUS-WIDE, the ef-
fectiveness of align-based ATNet is limited. On
the VireoFood-172, the cross-modal constraint-based
methods ARCH-D and CMRR bring less improvement
on the tail.

4.4. Ablation Study

To analyze the mechanism by which CMLTNet takes
performance gains, we gradually added modules to the base
model for ablation study, the results are shown in Table 3.

* Compared with the base model, after the alignment
(+A), the model achieves better performance in overall
classes. In addition, the rise of the tail class is higher
than that of the head class and the middle class, for
example, the rise of the head, med, and tail classes in
NUS-WIDE are 4%, 0.8%, and 8%, which means that
after the introduction of cross-modal information, the
tail class has better information supplementation effec-
tively alleviates the imbalance problem.

Table 3. Ablation study of CMLTNet uses ResNet-50 as the Base
model. In the table, +A means cross-modal alignment, and +I
means cross-modal inference which contains two words embed-
ding combination methods, mean of features (M) and linear pro-
jection (L), and F is the feature fusion.

Model NUS-WIDE VireoFood-172
All |Head | Med | Tail | All |Head | Med | Tail
Base 0.44410.692 | 0.536|0.357 [ 0.817 | 0.817 | 0.824 | 0.798
+A 0.466 | 0.698 | 0.540 | 0.388 | 0.821 | 0.821 [ 0.834 | 0.822
+I(M) 0.355[0.594 (0.411]0.279{0.780 | 0.790 | 0.797 | 0.708
+I(L) 0.401 [ 0.628 | 0.446 | 0.332 ] 0.801 | 0.802 [ 0.812|0.771
+A+I(M)+F [ 0.473 | 0.703 | 0.543 1 0.397 | 0.829 | 0.823 | 0.837 | 0.816
+A+I(L)+F | 0.486 | 0.707 | 0.548 | 0.413 | 0.833 | 0.825 | 0.842 | 0.823

¢ As for the cross-modal inference (+I), the visual noise
is filtered through the inference, which makes the gap
between the head and the tail smaller, but it also causes
a loss of information that may be beneficial for classifi-
cation, so the accuracy of the direct prediction of cross-
modal inference is not high (whether mean or linear
projection in embedding), but it contains semantic in-
formation which can supplement the aligned features.

* The supplemental effects can be seen from the effect of
cross-modal fusion (+F). Compared with the aligned
prediction, the performances of the head, middle, and
tail are further improved.

4.5. In-depth Analysis of Fusion Strategy

In this section, we discuss the fusion strategy choosing of
the CMLTNet, the performance of fusion strategy of cross-
modal features are shown in Table 4.We find although the
best that whether using features summation (Add), features



Table 4. The performance of CMLTNet using different fusion
strategies. Align, Inference and Cross-modal Fusion represent
the performance using aligned visual features, semantic embed-
dings, and fused augmented features.

. Cross-modal Fusion
Class Align Inference Add Con | Max | Min
All 0.466 0.401 0.482 | 0.483 | 0.486 | 0.484
Head 0.698 0.628 0.709 | 0.707 | 0.707 | 0.707
Med 0.540 0.446 0.550 | 0.549 | 0.548 | 0.549
Tail 0.388 0.332 0.407 | 0.410 | 0.413 | 0411
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Figure 4. A t-SNE visualization of the feature distribution in the
latent embedding spaces, where blue crosses represent head class
samples and red dots represent tail class samples.
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Figure 5. Visualization of model attention, Visual Features, Cross-
modal Features and Fused Features represent the the model atten-
tion in different feature spaces.

concatenation (Con), features maximum (Max), or features
minimum (Min), the head, medium, and tail predictions can
be stably improved compared with the , which demonstrates
that CMLTNet can extract the useful information from the
two modalities through privileged information learning.

4.6. Case Study
4.6.1 Representation Learning in Feature Spaces

Through the above analysis, we found that each module
of CMLTNet played a positive role in alleviating the im-
balance problem. In this section we delve further into the

feature space to understand how it improves representation
learning. We randomly chose two confusing head and tail
classes from VireoFood-172 (the imbalance ratio between
them is 4.8) and use t-SNE to observe their distribution in
the feature space.

The results are shown in Figure 4, features are heavily
mixed in the visual space, which is due to the bias of the
model in the optimization. However, in the semantic space,
feature dimension is relatively lower, so the head class and
the tail class are better distinguished. At the same time,
the distribution of features is the aggregation of multiple
clusters with distinct semantic features.

Through the alignment operation of CMLTNet, we find
that the features of both head and tail classes, like that in the
semantic space, tend to form small clusters, which makes
some mixed head and tail features be distinguished. On the
other line, after semantic inference, the head and tail are
gathered into their respective spaces, and there is a clear
demarcation between classes. Finally, in the fusion space,
the features combine the characteristics of the above two
spaces, which makes the intra-class aggregation and the
inter-class separation at the same time, so that both the head
and the tail get better representation learning.

4.6.2 Visual Attention of Different Features

Previous experiments have shown the improvement of
CMLTNet on representation learning. In this section,
we further analyze whether the CMLTNet learn semantic-
meaningful information from features on the head, middle,
and tail classes by GradCAM [25] visualization, as shown
in Fig. 5.

we find that the interference of visual noise on the model
makes it easy to be attracted by the background, especially
in the tail with insufficient information diversity. By cross-
modal inference, the attention of the model is more focused
than that in visual modality, and reduces the problem of at-
tention to the background; the modal fusion combines the
attention of both modality. We can also find that the visual
modality pay less attention to some rare concepts such as
“rainbow” and “whale” in the tail class, but the semantic
modality can learn them better, which explains the effec-
tiveness of CMLTNet in alleviating the long tail problem.

5. Conclusion

This paper introduces CMLTNet, which enhances long-
tailed classification based on cross-modal privilege infor-
mation. Through heterogeneous feature alignment, cross-
modal transfer and fusion enhancement representation
learning, it strengthens the focus on minority classes, im-
proves overall prediction ability, and provides a “alignment-
inference-fusion” framework for enhancing classification
using cross-modal information.



This work is a preliminary step of cross-modal learning
for long-tailed classification, in the future, we consider fur-
ther enriching the diversity at the sample level by methods
such as contrastive learning, and introduce causal inference
in feature learning to improve the extraction of key infor-
mation and further enhance the learning of tail features.
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