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Abstract. 3D scene understanding and generation are to reconstruct
the layout of the scene and each object from an RGB image, estimate its
semantic type in 3D space and generate a 3D scene. At present, the 3D
scene generation algorithm based on deep learning mainly recovers the
3D scene from a single image. Due to the complexity of the real environ-
ment, the information provided by a single image is limited, and there are
problems such as the lack of single-view information and the occlusion
of objects in the scene. In response to the above problems, we propose
a 3D scene generation framework SGMT, which realizes multi-view po-
sition information fusion and reconstructs the 3D scene from multi-view
video time series data to compensate for the missing object position in
existing methods. We demonstrated the effectiveness of multi-view scene
generation of SGMT on the UrbanScene3D and SUNRGBD dataset and
studied the influence of SGCN and joint fine-tuning. In addition, we fur-
ther explored the transfer ability of the SGMT between datasets and
discussed future improvements.

Keywords: 3D scene generation · Multi-view fusion · Multi-view time
series data.

1 INTRODUCTION

3D scene generation is an important task in computer vision, which has a great
impact on many fields like augmented reality and virtual reality. The main idea
of the traditional 3D scene construction method is to manually process and fuse
the visual information, and reconstruct a 3D scene by scene rendering which
has high time and labor costs. To alleviate the above problems, end-to-end deep
learning methods are introduced into 3D scene generation, which avoids complex
manual processing through a data-driven manner.

The methods based on deep learning mainly divide the 3D scene generation
task into three sub-tasks: layout estimation, object detection, and shape recov-
ery. Early works completed the three sub tasks separately[15, 19, 1]. Total3d[17]
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Fig. 1. The schematic diagram of SGMT, obtaining multi-view time series data from
video frames as input, and finally realizing 3D scene recovery.

bridged the gap between these three tasks and restored the 3D scene from the
perspective of the overall scene. On this basis, follow-up studies have proposed
solutions to improve the accuracy of overall 3D scene restoration[23, 24]. How-
ever, most of the existing methods recover 3D scenes from a single image. Due
to the complexity of the real environment, the information provided by a single
image is limited, and there are some problems such as the lack of single-view
information and the occlusion of objects in the scene.

To alleviate the aforementioned problems, we study to decouple and reorga-
nize the existing deep learning-based 3D scene generation methods and explore
the key factors affecting the performance. On this basis, we proposed a 3D scene
generation framework SGMT, which recovers the overall 3D scene and compen-
sates for the multi-view scene generation by fusing multi-angle position infor-
mation. The overall framework of the model is shown in Fig. 1, which is mainly
divided into three stages: the initial prediction stage, the refinement stage and
the fusion stage. In the initial prediction stage, the geometric information in the
visual input is extracted through the layout estimation network(LEN), the object
detection network(ODN) and the local implicit embedding network(LIEN), and
the initial prediction of the layout box, object box and object grid is realized.In
the refinement stage, the scene graph convolution network(SGCN) is used to
update the layout and object features and the refinement of the initial results is
completed. In the fusion stage, the translation, rotation and fusion of the results
from different perspectives are realized, so that the position information of the
object can be adjusted and supplemented.

In order to explore the influence of the refinement stage in the proposed
framework, we design comparative experiments to demonstrate its effectiveness
in improving the generation result from both qualitative and quantitative per-
spectives. Further, we compare the result in the scene dataset SUNRGBD and
UrbanScene3D multi-view video data, analyze it from the aspects of geometry
and appearance, and discuss the transfer ability of 3D scene generation model
and the problems in the transfer process in depth.

In summary, the main contributions of this paper include:
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– On the basis of cutting-edge work in deep learning-based 3D scene recon-
struction, we propose a multi-view 3D scene generation framework SGMT,
which realizes the conversion from multi-view 2D video data to 3D scenes.

– The effectiveness of SGCN and joint fine-tuning in improving model perfor-
mance is analyzed and verified, and the transfer ability of the model and the
key problems in the process of model transfer are discussed.

2 RELATED WORKS

Layout estimation, object detection, and shape recovery are important compo-
nents of 3D scene generation algorithms. Layout Estimation. Layout estima-
tion can be divided into two types. One is to obtain the feature map of the
layout based on the neural network, and then generate the parametric repre-
sentation[15, 19, 2]. The other is a deep learning end-to-end method[11, 12, 5, 6],
which treats the layout estimation task as a regression of keypoints or a clas-
sification of spatial layout types, improving the accuracy of layout estimation.
Object Detection. Object detection includes 2D object detection and 3D ob-
ject detection. 2D object detection is to detect 2D bounding boxes and category
information of objects in 2D images, such as Faster-RCNN[18] and YOLO series
algorithms. 3D object detection often predicts the 3D bounding box based on
the 2D bounding box[7], so as to obtain the information such as the length,
width, height, offset angle and 3D space position of the object in the real 3D
scene. Shape Recovery. Previous works of shape recovery have attempted to
use point clouds and voxels to represent the 3D target object[1, 10], or used re-
trieval methods to search for similar-looking models from the dataset[8]. The
reconstruction results of these method have lower resolution and consume more
memory. In order to alleviate the above problems, more methods begin to exploit
the prior knowledge of shape, express the shape of an object as a feature vector
or an implicit function, and finally recover its shape[16, 4, 3].

The above methods only consider independent geometries. In order to under-
stand and reconstruct the scene from an overall perspective, a method of fusing
the contextual information of the scene has emerged[17]. At the same time, the
graph convolutional neural network is added to refine the model[23], and the
structural implicit network is further used to improve the shape estimation of
the object[24], which has become the most advanced method at present.

3 METHOD

The overall algorithm flow of SGMT is shown in Fig. 2, which includes five
modules. We divide them into three stages, namely the initial prediction stage,
the refinement stage, and the fusion stage. Their details are described below.

3.1 Initial Prediction Stage

The initial prediction stage adopts LEN, ODN, and LIEN in [17, 24].
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Fig. 2. Illustration of the algorithm flow of SGMT, enabling 3D scene recovery from
multi-view time series data.

Layout Estimation Network LEN is used for the initial prediction of the
layout 3D bounding box XL

0 ∈ R3 and camera pose R(β0, γ0) ∈ R2, which is
further parameterized by the method of [17, 24] as,

XL
0 = h(C0, s

l
0, θ

l
0) (1)

where C0 ∈ R3 is the center of the layout box, sl0 ∈ R3 is the space size,
θl0 ∈ (−π, π) is the direction angle, and h(·) is the function that composes the
3D bounding box. The algorithm flow of LEN is shown in Fig. 2. First, the
ResNet is used to extract the appearance features al, and then the two-layer
MLP is used to predict (β0, γ0, C0, s

l
0, θ

l
0).

Object Detection Network ODN can predict 3D bounding boxes XO
0 ∈ R3

from 2D bounding boxes of objects. Using the method of [17, 24], it is further
parameterized as,

XO
0 = h(δ0, d0, s0, θ0) (2)

where δ0 ∈ R2 is the offset between the center of the 2D bounding box and
the 2D projection center of the 3D bounding box, d0 ∈ R is the distance from
the 2D projection center of the 3D bounding box to the center of the camera,
s0 ∈ R3 is the space size of the object, θ0 ∈ (−π, π) is the orientation angle
of the object. The algorithm flow of ODN is shown in Fig. 2. The appearance
feature ao is extracted from the 2D bounding box using ResNet, at the same
time, the size and relative position of each object 2D bounding box are encoded
as geometric features GF . GF and ao are input into a two-layer MLP to predict
(δ0, d0, s0, θ0) of the object.

Local Implicit Embedding Network LIEN is used to to recover the shape
and pose of objects. The algorithm flow of this module is shown in Fig. 2. First,
we input the 2D bounding box of the object to ResNet to extract the appearance
feature aI . In order to effectively learn the implicit shape features, the class code
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CC of the object is concatenated with its appearance feature aI , and then the
latent code I is obtained using a three-layer MLP. I is input into LDIF to obtain
a 3D latent shape representation. Finally, we use the Marching Cubes[14] to get
the point and surface information of the object.

3.2 Refinement Stage

In the refinement stage, SGCN is added to update the layout, object and rela-
tion nodes in the scene graph through the process of four message passing[24],
as shown in the Fig. 2. We use the results of the initial stage to extract the
feature vectors of layout and object nodes and then process them into feature
matrices Mo ∈ Rd×(N+1). The relation nodes are divided into two categories,
one represents the relationship between the layout and the object, which is ini-
tialized with a constant value, and the other represents the relationship between
the objects, which is initialized using the GT and bounding box coordinates,
and then they are processed as feature matrices Mr ∈ Rd×(N+1)2 . The process
of message passing can be expressed as

Mo
′

= σ(Mo +W sdMo +W rsMrArs +W rdMrArd) (3)

Mr
′

= σ(Mr +W srMoAsr +W drMoAdr) (4)

where s is the source object/layout node; d is the target object/layout node; r is
the relation node; W and A are the linear transformation and adjacency matrix
from the source node to the target node.

3.3 Fusion Stage

Multi-view scene fusion refers to the process of fusing objects from different per-
spectives into one scene. This process can be regarded as the transformation of
the coordinate system of objects in the scene. Compared with generating a 3D
scene from a single image, multi-view scene generation involves not only the ro-
tation of the camera, but also but also the translation of the camera. For a point
a on the object, the coordinate before transformation is (a1, a2, a3)

T , the coor-
dinate after transformation is (a

′

1, a
′

2, a
′

3)
T , and the rigid body transformation

formula is a′

1

a
′

2

a
′

3

 =

[
R t
0T 1

]a1a2
a3

 (5)

where R ∈ R3×3 is the rotation matrix of the camera, which can be predicted
by LEN, and t ∈ R3×1 is the translation matrix, which can be obtained by
the aerial photography trajectory of the camera. We use the first scene graph
as the world coordinate system, transform the 3D coordinates of objects from
other perspectives into it, and then average the eight corner coordinates of the
same object from different perspectives. Finally, the fusion of object position
information is realized. The whole fusion process is shown in Fig. 2.
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3.4 Loss Function

We refer to the method of [17, 24] to define the loss function of the model in
modules. When training LEN and ODN, we use classification and regression loss
for every output parameter of LEN and ODN. When training LIEN, we weight
shape element center loss Lc[3] and point sample loss Lp[24] to sum. In the initial
prediction stage, the loss function is mainly optimized for the 3D bounding box
parameters of the object and the layout, but not for the final prediction result.
Therefore, when training SGCN, the cooperation loss Lco[7] is added, and the
formula is as follows:

Lco = λphyLphy + λbdb2DLbdb2D + λcornerLcorner (6)

where Lphy is the mean square error loss, which is used to reduce the intersec-
tion between the layout and the object bounding box; Lbdb2D and Lcorner are
SmoothL1Loss, which is used to reduce the error of the 3D bounding box of the
object and its 2D projection. In addition to Lco, Lldifphy[24] is also added in
the joint fine-tuning to reduce the crossover between objects. The formula is as
follows:

Lldifphy =
1

N

N∑
i=1

1

|Si|
∑
x∈Pi

||relu(0.5− sigmoid(αLDIFi(x)))|| (7)

where N is the number of objects in the scene; Pi is the sampling point from
each object; αLDIFi(x) is the value of the obtained point on the LDIF decoder,
and has been scaled by α. After the sigmoid and relu activation functions, the
loss function only considers the points that intersect inside the object, that is,
the points where αLDIFi(x) is negative. Finally, we can get the loss function of
the whole model, the formula is as follows:

Ljoint = LLEN + LODN + Lco + Lldifphy (8)

4 EXPERIMENTS

4.1 Experiments Setup

Datasets We use SUNRGBD[21, 20, 9, 22] and UrbanScene3D[13] for model
training, testing and transfer. The SUNRGBD dataset contains 10,335 RGBD
images of indoor scenes, of which the 1-5050th images of the dataset are used
for validation and testing; the 5051-10,335th images are used for training. The
UrbanScene3D dataset contains 5 reconstructed real scenes. We intercepted the
multi-view pictures of the scene from the aerial video of the Sci-Art, and got
a total of 341 pictures. At the same time, annotations are established for each
image, including the coordinates of the 2D bounding box of the object, the ob-
ject category, the camera internal parameters, and the image ID. The processed
UrbanScene3D dataset is used as multi-view time series data to complete the
model testing and transfer.
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Evaluation Measures We use the mean of IoU to evaluate the accuracy of
layout and object bounding box, the mean of camera radian error to evaluate
the accuracy of camera pose, and Lg [17] to evaluate the accuracy of object
triangular mesh. The formula is as follows:

IoU(G,E) =
|G ∪ E|
|G ∩ E|

(9)

where G is the actual layout/object bounding box and E is the predicted lay-
out/object bounding box;

CamErr = |θg − θe| ×
180

π
(10)

where θg is the actual camera rotation angle, and θe is the predicted camera
rotation angle;

Lg =
1

N

N∑
i=1

1

|Si|
∑

q∈Si,p∈Mi

min||p− q||22 (11)

where N is the number of objects in the scene, q is a point on the ground-truth
surface Si, p is a point on the predicted object gridMi, and ||p− q||22 represents
the distance between the two points. To sum up, we set six evaluation metrics:
LayoutIoU , CamPitchErr, CamRollErr, Box3DIoU , Box2DIoU , and Lg.

Implementation Details For LEN, ODN and LIEN, we use pre-trained weight
parameters[17, 24]. SGCN is trained on the SUNRGBD dataset, using 30 epochs
in total and Adam optimizer with a batch size of 32 and learning rate decaying
from 2e-4 (scaled by 0.5 when the epoch reaches 18, 23, 28). When training SGCN
individually, we use Ljoint without Lldifphy, and put it into the full model with
pre-trained weights of other modules. Joint fine-tuning is similar to the training
setup of SGCN, except that the batch size is 4, the learning rate decays from
1e-4 and Ljoint with Lldifphy is used.

4.2 Comparative experiment

In this section, we are going to analyse the effects of SGCN and joint fine-tuning
in the refinement stage on improving SGMT performance from both quantitative
and qualitative perspectives.

Quantitative analysis Six evaluation metrics are used to evaluate the perfor-
mance change of the model before and after refinement and fine-tuning. As is
shown in Table 1, from initial prediction to SGCN and then to joint fine-tuning,
LayoutIoU , Box3DIoU and Box2DIoU are all improved, while CamPitchErr,
CamRollErr and Lg all decreases. This indicates that the performance of 3D
scene generation improves, and possible reasons are as follows:
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Table 1. Comparison of the SGMT performance before and after SGCN and joint
fine-tuning in the SUNRGBD dataset. IP means Initial Prediction.

Evaluation Metrics IP IP+SGCN IP+SGCN+Joint Fine-tuning

LayoutIoU 0.61854 0.63649 0.67800

CamPitchErr 3.98966 3.04301 2.49251

CamRollErr 2.71317 2.18722 2.13512

Box3DIoU 0.13635 0.18991 0.29596

Box2DIoU 0.63158 0.67418 0.75534

Lg 1.20858 1.13047 1.10760

(a)                                   (b)                                   (c)                                   (d)
Fig. 3. Comparison of model results before and after SGCN and joint fine-tuning:
(a) input image and recognized objects; (b) initial prediction results; (c) results after
SGCN; (d) results after joint fine-tuning.

(1) SGCN integrates scene context information, acquires important scene
knowledge, and updates the features of objects and layouts, making the results
more accurate. At the same time, Lco is added when training SGCN, which
maintains the consistency between the 2D and 3D bounding boxes, and improves
the accuracy of the model.

(2) During joint fine-tuning, some models that are frozen during SGCN train-
ing are unfrozen, and the weight parameters of the overall model are updated.
At the same time, Lldifphy is added to reduce the intersection between objects,
which further improves the accuracy of the model.

Qualitative analysis According to the horizontal comparison of the results in
Fig. 3, it can be found that: 1) The 3D reconstruction ability of initial prediction
is relatively poor. As is shown in Fig. 3(b), although the approximate position
and shape of objects in the scene can be predicted, there are lots of problems.
For example, there are improper intersections between objects, between objects
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(a)                                                           (b)
Fig. 4. Generation results of different datasets (a) SUNRGBD dataset; (b) Urban-
Scene3D dataset.

and layout boxes, and some objects floats in the air. Furthermore, some objects’
orientation is different from the real one. 2) SGCN can solve some problems
above. As is shown in Fig. 3(c), objects in the scene do not suspend in the air
anymore and the position is more accurate. This indicates that after refinement
by SGCN, the model can accurately predict the position and size of the object’s
3D boundary box. 3) Joint fine-tuning can further improve the performance of
the model. As is shown in Fig. 3(d), improper intersection between objects and
between objects and layout boxes is reduced, and the orientation of objects is
more accurate. 4) SGCN and joint fine-tuning can improve the transfer ability of
the model. Comparing only the results on the UrbanScene3D dataset in Fig. 3,
it can be found that the results are improved to same extent after adding SGCN
and joint fine-tuning, but there are still many problems, which will be discussed
in the following.

4.3 Deep Analysis of Model Transferability

As is shown in Fig. 4, we will show the generation effect of the model on the
SUNRGBD and UrbanScene3D datasets, and the transfer ability of the model
and the problems will be discussed.

Fig. 4(b) shows that the model can accurately predict the location of ob-
jects in UrbanScene3D. However, comparing with Fig. 4(a) in SUNRGBD, there
are still many shortcomings. For example, the reconstruction quality of details,
shapes and textures of objects is poor, and the deviation of object’s angle still
exists. In addition, the category of reconstructed objects is relatively simple.
Two main reasons are as follows:

(1) Different shooting methods. Most of SUNRGBD are head-up shots, while
UrbanScene3D are mostly aerial shots and the camera position is not fixed.

(2) Differences in object classes. SUNRGBD is meant for indoor scenes, and
the objects are mostly furniture objects. However, UrbanScene3D is meant for
outdoor scenes, and the objects are more complex and diverse.

4.4 Visualization and fusion of multi-view scenes

We input multi-view time series data from UrbanScene3D to the model, and the
results include 3D boundary boxes of layouts and objects, triangular mesh and
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Fig. 5. 3D scene generation visualization results from multi-view time series data.

 (a)                                                                                     (b)

Fig. 6. Multi-view 3D scene fusion results. The left side is the 3D bounding box of the
object generated by each frame of pictures before fusion, and the right side is the 3D
bounding box of the fused object.

rotation matrix. Based on those results, the geometries are created and rendered.
The visualization results of two groups are shown in Fig. 5. It can be seen that
the model can reconstruct 3D scenes from each frame of time series data. In this
way, each frame has corresponding reconstruction result.

In order to fuse the boundary boxes of objects from different perspectives,
the method in Section 3.3 is used. The results before and after the fusion of two
groups are shown in Fig. 6. Comparing before and after the fusion, it can be
found that the fusion makes up for the location information loss by the same
object due to different shooting angles. In conclusion, the model can effectively
recover the overall 3D scene from multi-view time series data and realize the
fusion of multi-view location information.

5 CONCLUSION

In this paper, we design a framework SGMT, which can can recover the overall
3D scene from multi-view video data. However, there are still some problems
remain to be further discussed. Firstly, what the framework can reconstruct
is very dependent on the original dataset. When it was transferred to other
datasets, the prediction of object categories, shape details and object position
orientation is not accurate enough. Secondly, the method of multi-view scene
fusion does not involve the fusion of object shape and texture features. Therefore,
the next research will continue to train and optimize the model, improve the
method of multi-perspective scene fusion, pay more attention to the fusion of
object shape and texture features, and restore 3D scenes more completely.
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