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Abstract

Causal inference has emerged as a promising approach for
identifying decisive semantic factors and eliminating spuri-
ous correlations in visual representation learning. However,
most existing methods rely on latent, data-driven confounder
modeling, normally attributing the source of bias to back-
ground information while neglecting object-level semantic
confusions that commonly occur in complex scenes. This
limits their effectiveness in disentangling causal factors from
confounding semantics. To address this challenge, we pro-
pose an explicit modeling approach for both causal factors
and confounders, termed Explicit Modeling Causal Model
(EMCM). The proposed framework consists of three key
components. The Features Stability Estimation module ex-
plicitly models the relationship between visual semantics and
class labels by leveraging clustering patterns to perform class-
aware separation of causal and confounding factors. It pro-
duces class-specific causal factors and confounding factors
linked to ambiguous categories. Subsequently, the Discrim-
inative Features Enhancing module integrates causal factors
into fused patch features via front-door intervention for stable
semantics. In parallel, the Explicit Confounder Modeling and
Debiasing Module learns confounders under clear label guid-
ance and derives debiased context features by TDE modeling.
This framework leverages two complementary causal per-
spectives to construct a unified semantic representation that
facilitates improved generalization. Extensive experiments on
two datasets demonstrate that EMCM effectively disentan-
gles causal and confounding factors in complex scenarios,
consistently outperforming state-of-the-art causal debiasing
methods and text-guided methods in all metrics.

Introduction

Text-enhanced image classification aims to utilize more dis-
criminative textual information to guide visual representa-
tion learning, solving challenges posed by inter-class sim-
ilarity and intra-class diversity in visual data (Chen et al.
2023b; Qi et al. 2025¢). Existing methods typically enforce
the alignment of heterogeneous modality representations to
adjust the distribution of high-dimensional visual features
and enhance identifiability. However, as the complexity of
visual data increases, the performance of cross-modal learn-
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Figure 1: In contrast to conventional causal methods that
model confounders in a data-driven manner, our proposed
EMCM leverages a visual pattern base to facilitate the ex-
plicit modeling of causal and confounding features.

ing deteriorates. This is due to redundant features and spuri-
ous correlations in images, hindering alignment.

Naive methods can be categorized into two types: feature-
level alignment methods and fine-grained alignment meth-
ods. The former typically maps features from different
modalities directly into a shared latent space (Li et al. 2024;
Guan et al. 2023; Meng et al. 2019) and employs regulariza-
tions (Radford et al. 2021; Yang et al. 2022) to bring the rep-
resentations of corresponding texts and images closer while
separating the unrelated pairs. However, heavy compression
of semantic information in global features degrades align-
ment performance. To address this, the latter typically lever-
ages detection models to extract object regions, aligning spe-
cific visual elements with words to exclude the interference
of irrelevant elements (Wei et al. 2020; Pan, Wu, and Zhang
2023). However, these purely data-driven methods can only
capture statistical correlations and fail to distinguish be-
tween visual elements that are correlated but not causally
related. To further mitigate the influence of spurious corre-
lations, causal inference methods have been introduced to



model the associations among visual components, enabling
the identification of causal factors and confounders. These
methods aim to suppress features detrimental to downstream
tasks through interventions and counterfactual reasoning.
Despite the integration of causal inference into representa-
tion learning, existing frameworks still suffer from several
issues: (1) Confounder extraction predominantly focuses on
coarse foreground-background distinctions, which leads to
insufficient disentanglement granularity in complex multi-
object scenarios, e.g., Chinese food recognition; (2) Most
of the existing methods construct latent confounder features
in a data-driven manner from a predefined confounder pool,
yet they lack explicit semantic-level guidance, which limits
their generalization ability.

To address these challenges, this paper presents an Ex-
plicit Modeling Causal Model (EMCM) that extracts causal
and confounding factors by analyzing the pre-defined se-
mantic pattern base, while forming synergistic representa-
tions by fusing causal stable features with debiased contex-
tual features for better generalization. Specifically, EMCM
involves three key modules: Feature Stability Estimation
(FSE) module, Discriminative Feature Enhancing (DFE)
module, and Explicit Confounder Modeling and Debias-
ing (ECMD) module. Specifically, the FSE module utilizes
a clustering-pattern base, consisting of semantically inten-
sive yet noisy visual patches extracted by the pre-trained
Grounding DINO model, to explicitly separate stable causal
factors from unstable confounding factors. This arises from
the observation that visual factors shared across multiple
categories tend to be confounders, while those unique to a
specific category are likely to become discriminative cues.
By analyzing the purity of categories in clusters, the FSE
outputs causal and confounding factors as well as confus-
ing labels. The DFE module is applied to integrate causal
factors with patch features through front-door intervention.
In parallel, the ECMD module refines confounders and ob-
tains context-debiased global features via counterfactual in-
ference. EMCM achieves better generalization by mitigating
the influence of contextually spurious correlations and em-
phasizing truly discriminative causal information.

Extensive experiments have been conducted on the
VireoFood-172 and NUS-WIDE datasets to demonstrate the
superiority of EMCM, including performance comparison
with SOTA methods, ablation study, in-depth analyses, and
case studies. The results validate the effectiveness of the
EMCM in explicitly uncovering causal factors and con-
founders through semantic relationships and in combining
stable causal features with debiased contextual information
to enhance generalization. The contributions are as follows:

 This paper proposes a framework that explicitly models
the causal and confounding factors for image classifica-
tion. It is achieved by examining the relationship between
category distributions and visual patterns for feature sta-
bility estimation. To the best of our knowledge, this is the
first attempt to incorporate object-level semantics to facil-
itate explicit causal modeling.

» This paper adaptively constructs sample-specific con-
founder features based on confounding patterns and cat-
egory constraints, ensuring consistent debiasing across

similar samples while simplifying the learning process, of-
fering a novel approach for confounder feature extraction.
» Extensive experiments on two public datasets demonstrate
that our explicit causal modeling approach outperforms
existing latent confounder extraction methods by more ef-
fectively identifying spurious semantics in complex visual
scenarios. In addition, in-depth analysis shows that our
method is adaptive to low-quality and noisy patches that
may arise from the pre-trained Grounding DINO model.

Related Work

Visual-textual alignment can be categorized into global
alignment and fine-grained alignment. The former directly
maps sample features to the same latent space (Meng et al.
2019; Lao et al. 2025; Sun et al. 2023; Qi et al. 2025a;
Li et al. 2025; Yang et al. 2025). To achieve this, (Meng
et al. 2019) adopts partial heterogeneous transfer to make
shared information interact between modalities. More ad-
vanced clip-based methods (Radford et al. 2021; Andonian,
Chen, and Hamid 2022; Zhang et al. 2025; Qi et al. 2025b)
use contrastive loss to obtain better consistent associations
from large paired datasets and perform well in zero-shot
conditions. Meanwhile, fine-grained alignment (Pan, Wu,
and Zhang 2023; Xie et al. 2022; Gao et al. 2024; Meng
et al. 2025; Bao et al. 2025) requires local elements, such as
text words and image ROI regions, to be paired individually,
aspiring for better interpretability and stability. (Pan, Wu,
and Zhang 2023) discovers the shared semantics of image
and text by mining the informative region-word pairs and
rejecting irrelevant alignments. (Gao et al. 2024) introduces
softened targets derived from fine-grained intra-modal self-
similarity, effectively incorporating local similarities and
modeling many-to-many relationships across modalities.

Meanwhile, causal inference (Pearl, Glymour, and Jew-
ell 2016) has gained increasing traction for its ability to re-
move data bias in multimedia tasks, e.g., image classifica-
tion (Yang et al. 2023; Liu et al. 2022b; Wu et al. 2024b;
Yan et al. 2025), video question answering (Zang et al. 2023;
Liu, Li, and Lin 2023; Zhang, Zhang, and Xu 2023), image-
text retrieval (Liu et al. 2024b; Zhang et al. 2024; Li et al.
2023), image captioning (Yang et al. 2021; Liu et al. 2022a;
Chen et al. 2025), etc. (Yang et al. 2023) investigates the
adverse context bias of the datasets and proposes a plug-in
causal intervention module based on backdoor adjustment.
(Wu et al. 2024b) reveals two biases behind the attention
supervision and reduces them by subtracting direct causal
effects from total causal effects. To handle the biases in mul-
timodal tasks, (Liu, Li, and Lin 2023) introduces a linguis-
tic backdoor causal intervention module and a local-global
front-door intervention module to mitigate the cross-modal
spurious correlations, respectively. (Liu et al. 2024b) aims to
learn causally-invariant representations for cross-modal re-
trieval, satisfying the independence and sufficiency.

Existing methods mainly rely on foreground-background
separation for latent confounder modeling, making them in-
sufficient to capture object-level spurious correlations. In
contrast, EMCM performs explicit object-level causal mod-
eling, enabling the extraction of stable semantics.
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Figure 2: The overall architecture of EMCM. It separates causal from confounding factors via a pre-defined pattern base, then
in parallel, enhances stable features using the causal factors while explicitly modeling and debiasing the confounder features.

Problem Formulation

We formulate the task under the Learning Using Privileged
Information (LUPI) framework, where images {I;}% ,, la-
bels {y;}¥ ., and associated texts t}; are available during
training, but only images are used at inference time. The
objective is to learn consistent features for images shar-
ing the same label. This is formulated as: fo(I;) — ;.
Conventional causal methods model confounders and inter-
vene in a data-driven manner. The process is represented as:
fo(I;,do(C)) — y;, where C is the latent confounders.
Different from traditional causal methods, EMCM first
extracts semantically-intensive patches {p} }Z, from image
I; via a pre-trained vision-language model. A visual encoder
then captures patch-level features aggregated as Fp and a
global image representation F. Then, the FSE module sep-
arates causal and confounding factors based on cluster cate-
gory purity, yielding an aggregated causal dictionary D, and
Confounder(I;). Subsequently, the DFE module facilitates
causal reasoning by applying front-door intervention to ob-
tain category-specific causal semantic features Fs. Mean-
while, the ECMD module refines confounder candidates
with explicit constraints and then uses TDE modeling to ex-
tract debiased contextual features F-. The process is formu-
lated as: fp(F),, D.) @ fo(I; — Confounder(I;))) — v;.

Methodology

The Structural Causal Model (SCM) (Pearl, Glymour, and
Jewell 2016) is introduced to model the relationships among
variables in image classification. As illustrated in Fig.3, the
causal graph comprises five variables: image patches P,
overall semantic content .S, contextual information C, pre-
diction Y, and confounder Z derived from the spurious se-
mantic correlations and contextual noise.

Path P < S — Y. When using DINO for visual element
discretization, it essentially extracts semantically intensive

Figure 3: Causal view of the proposed EMCM.

visual regions. However, due to inherent dataset biases, ob-
ject co-occurrence is likely to occur given specific seman-
tic contexts. This results in a backdoor path between visual
patches and the predicted label Y.

Path P + S < Z — C. Relying solely on object-level
features while ignoring contextual cues empirically results
in suboptimal classification performance (Liu et al. 2022b),
particularly in complex scenarios where generalization is
critical. Nevertheless, acquiring debiased contextual infor-
mation is non-trivial, as backdoor pathway still exists.

This paper introduces EMCM, which explicitly models
causal and confounding factors using semantically inten-
sive yet noisy patches extracted by DINO. As shown in
Fig. 2, the framework consists of three modules. FSE builds
a clustering-based pattern base to separate causal factors
from confounder factors. DFE then applies front-door in-
tervention to emphasize stable causal features, serving as
the mediator M. ECMD further refines confounder fac-
tors under confusing-category constraints and derives de-
biased contextual features via counterfactual reasoning. By
combining stable causal cues with debiased representations,
EMCM achieves a comprehensive causal understanding.

Features Stability Estimation via Pattern Base

It is crucial to decouple the patch candidates by distinguish-
ing between stably discriminative features and confound-



ing features before conducting causal inference. Rather than
constructing a global confounder pool and extracting con-
founders in a data-driven manner (Liu et al. 2022b; Yang
et al. 2023; Liu, Li, and Lin 2023), CCEM leverages a
pattern base that models the purity of categories in each
cluster to distinguish between causal and confounding vi-
sual patches. This promotes more precise identification of
whether a specific visual pattern benefits the classification
or functions as a confounder.

First, the advanced grounding DINO (Liu et al. 2024a;
Qi et al. 2025¢) is used to extract semantically-intensive yet
noisy patches from images, formulated as:

{p:} = GroundingDINO(I;, et (1;)) e))
where @;q.; 1S a pre-trained predictor for text prompt. The
extraction process is performed offline, thereby not increas-
ing the complexity of the inference process.

For patches from the training set, the K-means algo-

rithm is applied to group patches into K clusters: C, Y =
K-means({P;}Y ), where C = {C;}X | denotes cluster

patterns, Y = {yj}q%l"f‘ denotes the cluster label, P, =

{pj}i<, denotes the set of patches of image I;. Subse-
quently, the purity of categories in each cluster is used to
model causal factors and confounders simultaneously.

Specificallly, the distribution of categories within each
cluster C; is represented by the vector of proportions y; =
[p(y1|C5), .., P(yn|C;)]. Then, the purity of cluster C; is de-
fined as the maximum of proportions:

Purity(C;) = max p(y|C;) )
yey

To judge whether a cluster is pure or confounded, we ap-
ply a threshold § € [0, 1]:

_ [Pure, if Purity(C;) > 6,
C-type(Ci) = {Confounded, if Purity(C;) < 4.

Subsequently, the confounder candidates are defined as the
set of cluster patterns corresponding to the confounded clus-
ters of the patches in image I. On top of that, the confusing
categories .oy are defined as the union of categories in
confounded clusters. This is formulated as:

C-type(C},) = Confounded,

Confounder(I;) = < p(Ck) pg € C,
vie{1,2,...,n;)

gconf (Iz) = U
C-type (C) )=Confounded
p'z eCk
where p(C;) is the pattern of cluster C;, ) represents the
set of categories. Meanwhile, the causal factors for class y
are defined as the set of patterns of the pure clusters that are
dominated by y:

3

“
Y (Ck) &)

C-type(C;) = Pure, }
Ci) = " C;
ply | Ci) = maxp(y’ | Ci)
(6)
Finally, we concatenate the results of Eq. (6) to obtain the
dictionary D¢ of causal factors.

Prototype, = {M(Ci)

Stable Features Extracting from Causal Factors

Confounders may arise from co-occurring but non-
discriminative objects, as these confounding elements intro-
duce spurious correlations between the image and the label.
Front-door intervention is used to cut off the confounding
path P + S — Y. Formally, a mediator variable M is
introduced to construct a front-door path P — M — Y,
and then we indirectly cut off the link P — M to block
the backdoor path M + P + S — Y. Accordingly, the
genuine causal effect between P and Y through M is:

P(Y|do(P)) = Zm P(M = m|P)x
Zp/ P(P=p)P(Y|P=p',M=m) (7)

Following (Chen, Sun, and Zhao 2024; Wang et al.
2024b), we define m as the aggregated feature determined
by p: m = h(p), where h is a self-attention module:

P(Y|do(P)) = 3 P(Y|M = h(p), P = )PP = 1)
= E, [B(Y|m.p)] ®)

Note that Ep, requires sampling over all patches, which
is computationally expensive. Thus, we utilize the dictionary
of causal factors to reduce complexity. Specifically, a cross-
attention framework (Qi et al. 2025d) is applied to fuse sta-
ble causal factors with variable m, formulated as:

(Wym)T (Wi D)
%)](Wv D C)
)
where W,,Wg ,W, are linear projections, d is feature di-
mension, and P(p’) is set to 1/||D¢||. We utilize NWGM
(Xu et al. 2015) to absorb the expectation into the forward
network and integrate sample-level features with fused fea-
tures from Eq. (9) to form the intervention prediction:
Vi = P(Y|do(P)) =~ P(Y|m & F(m,p))
~ Q(SA(F,) & F(m,p'))  (10)

where ¢ is a classifier, ¢ represents features fusion, forming
stably discriminative features Fg.

F(m,p') = [P(p) - Softmax(

Explicit Confounder Modeling and Debiasing

To explicitly obtain contextually-confusing features F'z, the
EMCM refines sample-specific confounder candidates from
the pattern base. Note that the pattern features of confound-
ing clusters, rather than the patch features themselves, serve
as confounder candidates. This is motivated by: (1) the pat-
tern features serve as stronger representatives of the visual
semantics within a cluster, (2) the reduced number of con-
founder candidates simplifies training while enhancing the
consistency of deconfounding across samples with similar
features. The process is formulated as:

Fz = fage(SA(Confounder(1;))) (11)

where confounder features F'; are optimized by the BCE
loss to approximate the predictions of confusing categories,

represented by Leons = Lecr(P(Fz), Yeons)-



Method Reference VireoFood-172 NUS-WIDE
acc@1 acc@5 r@1 r@5s p@l p@s
ViT-B/16 ICLR’21 88.51 97.66 45.04 86.98 80.18 40.12
Visual Causal CCD CVPR:22 88.92 97.84 46.45 89.61 81.69 41.28
Methods CCIM CVPR’23 89.18 97.55 46.81 88.37 82.01 40.79
LGCAM TPAMI'23 89.23 97.53 46.40 89.27 81.54 41.10
GOAT CVPR’24 89.42 97.85 46.92 88.63 82.17 40.91
ATNET MM’19 88.66 94.60 45.59 86.55 80.78 39.89
FDT CVPR’23 88.39 96.19 45.59 85.44 80.92 39.30
IRRA CVPR’23 89.61 97.97 46.13 86.45 79.96 39.29
Cross-modal HERM CVPR:23 90.27 96.88 46.14 85.68 81.31 39.36
Alignment Methods CHAN CVPR’23 88.38 97.67 46.37 86.94 81.64 3991
MOMKE MM’24 89.77 98.03 46.50 89.14 81.72 41.11
C2KD CVPR’24 88.62 97.85 46.19 88.55 81.17 40.84
MGCC AAAT’ 24 88.62 97.96 46.93 89.85 82.25 41.46
Ours 92.45 98.84 48.29 90.65 84.40 41.84

Table 1: Performance comparison between baselines and EMCM. Our method outperforms the SOTA across all benchmarks.
Best and second-best results are bolded and underlined, respectively.

Subsequently, EMCM removes the adverse effects of
category-universal contextual information on classification
by intervening with do(S = S’) and constructing a coun-
terfactual causal graph, as shown in Fig. 3(b). Here, S’ es-
sentially represents the contextual semantics shared across
different categories in a hypothetical scenario. The counter-
factual prediction score Y is calculated as:

Y =P(Y|do(S = §'),do(P = P'))
=P(Y|S=5,P=Fy) (12)

The debiased global features are defined as the total direct
effect of P onY, i.e., the difference between two predictions
given P = Fg and P = Fy. Since F, captures features
shared across categories, the difference Fg — Fz yields F¢,
which are free from confounding contextual information.

Training Strategy

During the forward process, the prediction is calculated as:
9; = ¢(Fs @ F¢), where ¢ is a linear classifier. The model
is trained by minimizing the cross-entropy loss L. (¥:, ¥:)-
To stabilize model training, the TDE and the front-door in-
tervention branches are trained separately based on their re-
spective features using CE loss. During the training of the
TDE branch, Lo is integrated into the objective function,
weighted by a coefficient « to balance its contribution. Sub-
sequently, the model is fine-tuned based on total loss:

»C:»Cce(ﬁiayi)'f'a'»cconf (13)

Experiments
Experiment Settings
Datasets Experiments are conducted on the VireoFood-172
(Chen and Ngo 2016) and NUS-WIDE (Chua et al. 2009)
dataset. The former is a single-label dataset of 110,241 food
images from 172 classes, while the latter is a multi-label
dataset of 269,648 images with 81 concepts.

Evaluation Metrics Following conventional image classi-
fication (Meng et al. 2019; Li, Song, and Luo 2017), we
leverage accuracy @{1,5} for the VireoFood-172 and preci-
sion&recall@{1,5} for the multi-label NUS-WIDE. All re-
ported results are the average of three runs with randomly
selected random seeds.

Implementation Details Following standard practice in
transformer-based models, we set the feature dimension to
768. The model is trained for 25 epochs with a batch size
of 32 using the Adam optimizer. The initial learning rate
is selected from the range [le—5, le—4] with a step size of
0.25, and decayed by a factor of 0.5 every 3 epochs. The
grounding DINO threshold is tuned within [0.1,0.3] with
a step of 0.05. The number of clusters K is selected from
{1024, 2048,4096} depending on the dataset. All experi-
ments are conducted on four NVIDIA RTX 3090 GPUs.

Performance Comparison

To verify the performance of proposed EMCM, we compare
it with various SOTA methods based on causal inference as
well as data-driven cross-modal alignment, including CCD
(Liu et al. 2022b), CCIM (Yang et al. 2023), LGCAM
(Liu, Li, and Lin 2023), GOAT (Wang et al. 2024a), AT-
NET (Meng et al. 2019), C2KD (Huo et al. 2024), MGCC
(Wu et al. 2024a), IRRA (Jiang and Ye 2023), FDT (Chen
et al. 2023a) HERM (Fu et al. 2023), CHAN (Pan, Wu, and
Zhang 2023), MOMKE (Xu, Jiang, and Liang 2024). We
implement these methods based on the settings described
above for fair comparison. The following observations can
be drawn from Table 1:

* The proposed EMCM outperforms SOTA methods on
both datasets by a large margin, thanks to the explicit
causal modeling of visual elements and complementary
causal features intervention.

e Methods that focus on semantically-intensive patches,
such as HERM and IRRA, achieve better performance,



VireoFood-172 NUS-WIDE
acc@] acc@5 r@l r@5 p@l p@5s

Base(B) 88.51 97.66 45.04 86.98 80.18 40.12
B+P 90.45 98.11 46.37 88.81 81.58 40.84
B+P+D 9123 9833 47.32 90.04 82.73 41.49
B+P+E 9146 98.33 47.57 89.66 83.03 41.32
EMCM 9245 98.82 48.30 90.68 84.44 41.86

Modules

Table 2: Ablation study of EMCM. P: Patch features fu-
sion. D: Discriminative features enhancing. E: Explicit con-
founder modeling and debiasing.

as the extracted elements have less redundant informa-
tion than global images. However, they still fall short of
EMCM, as they rely solely on data-driven training.

* Certain features alignment methods, due to the lack of ef-
fective information filtering, yield results even worse than
the backbone on the challenging VireoFood-172 dataset,
which has strong visual diversity.

* Most text-based alignment methods perform moderately
on the p@5 metric on the NUS-WIDE dataset, which can
be attributed to the noisy nature of the text features in this
dataset. Direct alignment leads to low-quality matches be-
tween text and images, affecting precision.

Ablation Study

To further validate the contribution of each module of the
proposed EMCM, we conducted the ablation experiments
presented in Table 2. The following findings are observed:

* The fusion of features extracted from patches significantly
outperforms global image classification, especially on the
VireoFood-172 dataset, where visual confounding is more
severe. This demonstrates that the visual element dis-
cretization strategy helps mitigate the impact of noise.

* The stable features derived from causal factors further im-
prove the results of patch feature fusion by highlighting
discriminative semantics and smoothing intra-class fea-
ture variations, providing more consistent representations.

* The context debiasing improves global image features by
explicitly modeling and removing sample-specific con-
founder features. Complementary to the causal factors, it
focuses on removing the residual contextual bias, thereby
forming a more generalized causal representation.

In-depth Analyses

Does the explicit modeling of confounding factors lead to
consistent performance gains? Compared with baseline
methods (Wang et al. 2024a), the proposed explicit pattern-
based modeling with a loss constraint achieves the best over-
all performance. This improvement stems from two key de-
sign choices. First, cluster-based confounder modeling out-
performs patch selection by using patterns as semantically
robust proxies that aggregate multiple similar patches. This
reduces noise and improves cross-sample consistency. In
contrast, patch-level features are often unstable due to se-
mantic ambiguity and inconsistent granularity. Second, the

acc@l1 recall@1

913 473 828
90.8 I I 46.8 I I 82.1 I I
90.3 46.3 814

acc@5s recall@5 precision@5
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98.6 90.1
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97.6 - 88.7 40.7
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1 patch features fusion | [l patch filtering w/o and w/ loss i
Il latent confounders

______________________________________________________________

Figure 4: Comparison of variations for confounders. Col-
umn 1: VireoFood-172; Column 2-3: NUS-WIDE.
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90 97.6 I I
89 97 l
0.1 0.15 02 025 0.1 0.15 02 0.25

w/o CCEM H w/ CCEM w/o CCEM B w/ CCEM

Figure 5: Performance comparison of contextually debiased
featurers under different patch qualities.

explicit loss constraint provides direct supervision to sepa-
rate causal and confounding semantics. Apart from that, the
low acc@5 performance of patch filtering is likely due to
its limited semantic coverage and lack of global structural
guidance, which hinders the retrieval of relevant classes.

How does the quality of patches extracted by DINO af-
fect the performance? Patches extracted by the DINO
model are associated with confidence scores, which reflect
patch quality to some extent. This section evaluates the con-
founder features derived from the explicit modeling under
four confidence thresholds. As shown in Fig. 5, the debiased
features consistently outperform vanilla patch feature fusion
across all confidence thresholds, demonstrating robustness
against varying patch qualities. Notably, at the lowest thresh-
old (0.1), which includes lower-quality patches, it achieves
the most significant performance gain, highlighting the abil-
ity to filter out redundant information. When the threshold
exceeds 0.25, the number of retained patches drops consid-
erably, leading to a general performance decline.

What is the impact of different K values of clustering
on EMCM? Itis observed that different clustering param-
eter settings affect the ratio of pure to confounding clus-
ters. To assess their impact on the pattern base and explicit
modeling, we analyze how the cluster-patch confusion ratio
influences performance under varying K values. As shown
in Table 3, increasing K results in more fine-grained and
independent clustering of visual features, reducing confu-
sion at the cluster level. However, the patch-level confu-
sion rate and overall performance remain largely unchanged,
suggesting that shared semantic features still contribute to
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Figure 6: The t-SNE visualization of EMCM modules. (a) features of ViT-B/16, (b) fusion features of patches, (c) features after
explicit context debiasing, (d) features after causal factors enhancing, and (e) features of EMCM.
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Sweet and sour spareribs 0.78 ( Spareribs with garlic 0.35) Chicken pot 0.33
Spareribs with garlic 0.08 | Braised tofu 0.26 | Griddle cooked bullfrog 0.24
Braised pork 0.07  Barbecued pork with rice0.08 ) Three cups sauce chicken 0.21

(Griddle cooked bullfrog 0.97) Mapo tofu 0.99)
Chicken pot 0.01 Braised tofu Se-3
Three cups sauce chicken 3e-3 Cold Rice Noodles le-6

(Griddle cooked bullfrog 0.83) (Mapo tofu 0.98)
Chicken pot 0.17 Braised tofu 0.02

\ Three cups sauce chicken 6e-4 ) | Cold Rice Noodles 2e4)
Chicken pot 0.78) Braised tofu 0.94 ( Mapo tofu 0.78
Griddle cooked bullfrog 0.15 | Mapo tofu 0.06 | Braised tofu 0.22
Three cups sauce chicken 0.05) Shredded pork with Tofu 1e-4 | Pork with Garlic Sauce 6e-5

Figure 7: Error analysis of EMCM. The ground-truth labels are shown in green. The blue, purple, and green borders represent
the results of context-debiased features, causal factors enhanced features, and EMCM, respectively.

K CR¢ ~ CRp acc@1  acc@5
train test
1024 0.8262 0.3937 0.4020 91.08 98.21
2048 0.7036 0.3910 0.3984 91.23 98.33
4096 0.5742 0.3906 0.3967 91.16 98.23

Table 3: Effect of K in clustering on cluster/patch confusing
ratios (CR¢, CRp) and performance (on VireoFood-172).

confusion. This demonstrates the stability of the clustering-
pattern-based confounder extraction mechanism.

Case Studies

Visualization analysis of the causal and confounding fac-
tors. This section explores how sample-specific confound-
ing and causal factors derived from the pattern base con-
tribute to sample representation. T-SNE visualizations of 10
random classes from the VireoFood-172 dataset are shown
in Fig. 6. Initially, significant overlap is observed (Fig. 6(a)).
After patch extraction and feature fusion (Fig. 6(b)), some
category confusion is reduced, but cluster divergence in-
creases. The explicit context debiasing (Fig. 6(c)) further im-
proves class separation by removing unstable features, while
causal factors (Fig. 6(d)) enhance inter-class differences. Fi-
nally, EMCM (Fig. 6(e)) results in well-separated features
with minimal overlap, demonstrating the effectiveness of
EMCM in disentangling discriminative causal semantic fea-
tures and confounding features across multiple categories.

Error Analysis. This section evaluates EMCM’s general-
ization through representative success and failure cases in
Fig. 7. In the left example, ECMD effectively suppresses
confusing categories, while causal factor-enhanced features
strengthen the correct prediction. The middle case indicates
that for dishes with atypical ingredients, removing interfer-
ing cues such as parsley may increase ambiguity. However,
front-door intervention helps mitigate such hidden seman-
tic bias. The right example shows that overly strong inter-
vention can introduce new errors, as the model downplays
shared tofu features between mapo tofu and braised tofu and
overemphasizes soup-base cues more typical of mapo tofu.

Conclusion

To address the limitations of latent confounder modeling in
capturing object-level spurious correlations under complex
scenes, EMCM explicitly extracts causal and confounding
factors from visual semantic patterns and fuses causal stable
features with debiased contextual information for general-
ized representations. A pre-trained grounding DINO model
is used to extract visual patches, and clustering is applied
to derive semantic patterns. Based on cluster purity mea-
surement, causal and confounding factors are separated. Fur-
thermore, the fusion of causal stable features and debiased
context features leads to improved generalization capability.
Future work will fully leverage the hierarchical relationships
between image patches and their associated textual words
for more fine-grained semantic disentanglement. Moreover,
constructing a cross-modal causal graph that connects vi-
sual elements and semantic words to enable more structured
causal reasoning remains an open challenge.
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