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Abstract

Recently, many researchers have made remarkable2

achievements in the field of artistic font synthe-3

sis, with impressive glyph style and effect style4

in the results. However, due to less exploration5

in style disentanglement, it is difficult for existing6

methods to envision a kind of unseen style (glyph-7

effect) compositions of artistic font, and thus can8

only learn the seen style compositions. To solve9

this problem, we propose a novel compositional10

zero-shot artistic font synthesis gan (CAFS-GAN),11

which allows the synthesis of unseen style compo-12

sitions by exploring the visual independence and13

joint compatibility of encoding semantics between14

glyph and effect. Specifically, we propose two15

contrast-based style encoders to achieve style dis-16

entanglement due to glyph and effect intertwin-17

ing in the image. Meanwhile, to preserve more18

glyph and effect detail, we propose a generator19

based on hierarchical dual styles AdaIN to reorga-20

nize content-styles representations from structure21

to texture gradually. Extensive experiments demon-22

strate the superiority of our model in generating23

high-quality artistic font images with unseen style24

compositions against other state-of-the-art meth-25

ods. The source code and data will be publicly26

available.27

1 Introduction28

Artistic fonts are frequently employed in signboards, posters,29

magazines, and web pages, playing an integral role in cap-30

tivating and sustaining the audience’s attention. The com-31

pelling nature of these fonts lies in the fact that designers32

meticulously craft visually appealing and harmonious glyph33

and effect styles that suit the occasion and theme. In the34

course of design, the designers draw upon design theory and35

aesthetic factors to conceive various style elements, often re-36

quiring only a momentary mental picture. It is worth noting37

that if we can provide a deep learning model with enough38

glyph styles and effect styles as prior knowledge, whether the39
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Figure 1: We aim to build an artistic font synthesis model for syn-
thesizing unseen style compositions (e.g., Arial-Cookie) by training
with some seen concepts, such as Century-Cookie, Century-Metal,
and Arial-Metal.

model can also design a kind of artistic font with unseen in- 40

tegrated style like humans. 41

In order to achieve the automatic synthesis of artistic font 42

based on deep learning, some conventional methods [Azadi 43

et al., 2018; Gao et al., 2019; Li et al., 2020a] focus on the 44

integrated style (glyph-effect) transfer and generate an artis- 45

tic font library with the existing style. These works treat the 46

style of artistic fonts as a whole and generalize the learned 47

integrated style to any character content. However, they 48

ignore the independence and decoupling of styles, making 49

these methods ineffective in scenarios where glyph and effect 50

styles must be controlled separately. Therefore, the conven- 51

tional methods cannot synthesize artistic fonts with unseen 52

style (glyph-effect) compositions. There are also some recent 53

works [Ge et al., 2021; Li et al., 2022a] that propose learning 54

disentangled style representations and synthesizing content- 55

glyph-effect controllable artistic font images. Unfortunately, 56

these methods focus on the seen style compositions and must 57

require a large amount of data paired with the three attributes 58



of content, glyph, and effect. Due to pixel-level supervision59

information, these methods inevitably focus on pixel-level re-60

lationship instead of creating the new style compositions, re-61

sulting in the generated images with a messy structure and62

unclear texture.63

In this paper, we propose a novel and practical task, called64

compositional zero-shot artistic font synthesis (CAFS), which65

focuses on unseen style composition synthesis, see Figure 1.66

It aims to learn the compositionality of glyphs and effects67

from the training set and is tasked with generalizing to un-68

seen style (glyph-effect) compositions on any character. To69

realize this task, we propose a new model, CAFS-GAN, from70

the perspective of style disentanglement and content-styles71

representations reorganization.72

For the style disentanglement, we propose two contrast-73

based style encoders, glyph encoder and effect encoder,74

which implement glyph and effect disentanglement and pre-75

cise style feature extraction. The key idea is that we intro-76

duce glyph style contrastive loss and effect style contrastive77

loss to learn the style commonalities and differences. For78

the content-styles representations reorganization, we propose79

an artistic font generator based on hierarchical dual styles80

AdaIN, which progressively feeds glyph and effect informa-81

tion to preserve more image details. The key idea is that82

the hierarchical dual styles AdaIN completes the composi-83

tion of glyph and content in the high-dimensional AdaIN84

layer, and the composition of effect and content in the low-85

dimensional AdaIN layer. Moreover, to enable the model86

to synthesize artistic font images with controllable style at-87

tributes, we adopt the well-known GAN [Goodfellow et al.,88

2014] framework and introduce two multi-task discrimina-89

tors, glyph discriminator and effect discriminator that con-90

strain the style of the generated glyphs and effects, respec-91

tively. Finally, to comprehensively evaluate the generated re-92

sults, we propose two evaluation metrics: glyph outline mis-93

alignment (GOLM) and effect perception error (EPE).94

In summary, our contributions are as follows:95

• We propose a novel compositional zero-shot artistic font96

synthesis gan (CAFS-GAN) to synthesize unseen style97

compositions for artistic font images. Meanwhile, our98

model supports the control of artistic font synthesis from99

three aspects (i.e., glyph, effect, and content).100

• We propose two new evaluation metrics, called glyph101

outline misalignment (GOLM) and effect perception er-102

ror (EPE), which enrich the evaluation methods from the103

unique attribute of the artistic font.104

• Extensive experiments demonstrate the effectiveness105

and superiority of our model in synthesizing unseen106

style compositions in Chinese standard, creative, hand-107

writing, calligraphy artistic fonts and English artistic108

fonts.109

2 Related Work110

2.1 Artistic Font Generation111

Early artistic font generation approaches are based on the112

high regularity of the spatial distribution for effects. T-Effects113

[Yang et al., 2016] and DynTypo [Men et al., 2019] focus on114

texture and special effects for synthesizing complex and re- 115

alistic artistic font images. TET-GAN [Yang et al., 2019a] 116

and ShapeMatching-GAN [Yang et al., 2019b] establish the 117

mapping between the original shape and the effect, using the 118

CNN (Convolutional Neural Network) to realize the text ef- 119

fect transfer. Then, AGIS-Net [Gao et al., 2019] and FET- 120

GAN [Li et al., 2020a] attempt the synchronous style transfer 121

of glyphs and effects of arbitrary characters or symbols. Re- 122

cently, DSE-Net [Li et al., 2022a] and GZS-Net [Ge et al., 123

2021] have conducted separate studies on the glyph structure 124

and effects of artistic fonts. Although these methods sepa- 125

rately encodes artistic font glyph and effects, they still have 126

a significant data dependency on paired data. These mod- 127

els learn to synthesize artistic fonts by training on paired 128

seen style combinations. Therefore, the optimization pro- 129

cess for the model parameters is based on the pixel-level er- 130

ror between the generated and real images, which causes the 131

model to focus excessively on pixel-level mapping relation- 132

ships. This makes it difficult for the models to create new 133

style combinations. 134

2.2 Disentangled Representation Learning 135

Disentangled representation learning aims to infer latent fac- 136

tors for a given object in the real world, where each latent 137

factor is responsible for generating a semantic feature [Han 138

et al., 2021; Yang et al., 2021; Saini et al., 2022]. Following 139

VAE, [Higgins et al., 2017] introduces β-VAE to discover in- 140

terpretable latent factor representations in a completely un- 141

supervised manner. [Chen et al., 2018] improved β-VAE, 142

and further proposed a principled classifier-free measure of 143

disentanglement. Recently, a large amount of works [Zhang 144

et al., 2018; Li et al., 2020b; Luo et al., 2022] have made 145

great contributions to disentangled shape and texture, unfor- 146

tunately, they are unable to generate novel combinations not 147

witnessed during training. 148

2.3 Compositional Zero-Shot Learning 149

Compositional zero-shot learning stands at the intersection of 150

compositionality and zero-shot learning and focuses on state 151

and object relations. Compositionality [Naeem et al., 2021] 152

can loosely be defined as the ability to decompose an observa- 153

tion into its primitives. Zero-shot learning [Gao et al., 2018; 154

Hong et al., 2022; Feng et al., 2022; Lin et al., 2022] aims 155

at recognizing or generating novel classes that are not ob- 156

served during training. Recently, [Yang et al., 2022] present 157

a novel decomposable causal view that characterizes how 158

compositional concepts are formed. [Karthik et al., 2022; 159

Mancini et al., 2021] propose to address the problem of open- 160

world compositional zero-shot learning. [Li et al., 2022b] 161

propose a novel siamese contrastive embedding network to 162

excavate discriminative prototypes of state and object. 163

In this paper, we propose a compositional zero-shot artis- 164

tic font synthesis, and use the artistic font’s glyph and effect 165

style as attribute primitives. More importantly, our method is 166

the first to estimate the unseen style compositions, and uses 167

the joint compatibility and differences between the two styles 168

to synthesize and optimize the detailed characteristics of the 169

image styles. 170
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Figure 2: The overview of proposed CAFS-GAN. The encoding process of CAFS-GAN has three input channels (1) effect sample sxi with
effect attribute xi, (2) glyph sample syi with glyph attribute yj , and (3) content sample szk with content attribute zk. For the style encoders,
we additionally input positive samples s+xi

and s+yj of style reference images. SSA integrates the style features of style samples and their
positive samples from style encoders. The generator utilizes the hierarchical dual styles AdaIN architecture to reorganize the input content,
effects, and glyph signals. The discriminator outputs a one-shot vector. The outputs of the discriminators in different channels indicate
whether the generated image comes from the domain corresponding to this channel.

3 Method171

3.1 Problem Define172

Compositional zero-shot artistic font synthesis (CAFS) aims173

to predict an unseen style composition, namely to synthesize174

glyph-effect compositions that do not exist in the training set175

and map it to any character to obtain a complete artistic font176

library. Let us denote with X = {xi}Nx
i=1 the set of effect at-177

tributes, with Y = {yj}
Ny

j=1 the set of glyph attributes, with178

Z = {zk}Nz

k=1 the set of characters, and with C = X × Y179

the set of all their possible compositions. T = {Zt, Ct} is180

a training set where Zt is a character set seen during train-181

ing (Zt ⊆ Z) and Ct is a style compositions set seen during182

training (Ct ⊆ C). When the glyph and effect elements in Ct183

covers all elements in X and Y , T can be used to train the184

model f : {Zt, Ct} → {Zt, Cu} synthesizing the artistic185

font images with unseen style combinations where Cu ⊂ C186

denote the unseen style compositions and Ct ∪ Cu = C.187

The difficulty of the CAFS task varies depending on the188

proportion of the Ct. If the style compositions in Ct covers189

all compositions and Cu ≡ ∅, the task definition is the same190

as the conventional artistic font generation task, where the191

model only needs to predict the seen style combination on ar-192

bitrary character content. In the case of Ct ⊂ C, since the193

model only learns jointly compatibility of encoding seman-194

tics between glyph and effect in seen style compositions, it195

is very challenging to predict unseen style combinations. It196

is worth noting that as the Ct shrinks, the training data can 197

provide the model with fewer data on the joint compatibility 198

relationship of glyph and effect. In this case, the shrink of 199

composition information hinders the recognizability of glyph 200

and effect, making it difficult for the model to predict unseen 201

style combinations. Regarding this hypothesis, we verified it 202

in Experiment 5.5. 203

3.2 Overview of CAFS-GAN 204

The CAFS-GAN consists of the following modules: two style 205

encoders Ex and Ey , two style similarity attention modules, 206

a content encoder Ez , an artistic font generator G, and two 207

style discriminators Dx and Dy , as shown in Figure 2. First, 208

Ex and Ey represent effect style encoder and glyph style en- 209

coder, respectively, which are used to disentangle and extract 210

glyph and effect style features. At the end of the two style 211

encoders, we add a style similarity attention (SSA) module, 212

which uses the similarity of style attributes to enhance the 213

model’s perception of various glyphs or effects. The struc- 214

ture details of Ex and Ey are similar to VGG11 [Simonyan 215

and Zisserman, 2014]. Unlike Ex and Ey , our Ez adds sev- 216

eral padding layers to increase the sampling times for the font 217

strokes at the image’s edge. This operation protects the in- 218

tegrity of the character structure. In addition, since the con- 219

tent information of characters belongs to high-dimensional 220

semantic information, we add resblocks at the end of the con- 221

tent encoder to retain more content information. Lastly, our 222



Effect-pos
Selection

Effect-neg
Selection

Effect Encoder

close push

Effect-pos
Selection

Effect-neg
Selection

Effect Encoder

close push

Glyph-pos
Selection

Glyph-neg
Selection

Glyph Encoder

close push

Figure 3: Two contrast-based style encoders. sxi and syj represent
effect and glyph samples. s+xi

and s+yj have the same visual attributes
as sxi and syj in the corresponding attributes, respectively, and vice
versa for effect and glyph negative samples.

Dx and Dy are two multi-task discriminators consisting of223

FRN (Filter Response Normalization) [Singh and Krishnan,224

2020] and convolutional layer, which consists of multiple out-225

put branches. Each branch learns a binary classification de-226

termining whether an artistic font has real glyph style or real227

effect style.228

In the next sections, we will look at the two aspects: style229

(glyph-effect) disentanglement (in sections 3.3 and 3.4) and230

content-styles representations reorganization (in section 3.5).231

232

3.3 Contrast-Based Style Encoders233

In the process of achieving the CAFS task, the style encoders234

need to provide the generator with disentangled glyph fea-235

tures and effect features. However, the actual situation is236

that the visual elements of effect, glyph, and content are en-237

tangled, and the commonly used data enhancement methods238

cannot eliminate or highlight a certain visual element. There-239

fore, we introduce a contrastive learning [He et al., 2020]240

strategy to encourage encoders to identify deep similarities241

and differences between the two style attributes. Taking the242

pipeline of effect extraction as an example, we define s+xi
and243

{s−1,xi
, s−2,xi

, ..., s−Nx−1,xi
} as the positive sample and nega-244

tive sample set of the original input sxi
, respectively. Nx245

denotes the number of all kinds of effect styles, one of which246

is the effect of positive samples, and Nx − 1 is the number247

of all kinds of negative effects. The positive pair (sxi
, s+xi

)248

only shares the same effect, and the negative pair (sxi
, s−r,xi

)249

have different effects (1 ≤ r ≤ Nx − 1), as shown in Figure250

3. At this time, we utilize the effect style contrastive loss to251

enhance the effect similarity between positive pairs and the252

dissimilarity between negative pairs:253

LEx
sty = −log

exp(fxi
· f+

xi
/τ)∑Nx−1

r=1 exp(fxi
· f−

r,xi
/τ)

, (1)

where fxi
, f+

xi
, f−

r,xi
are effect features obtained by254

sx, s
+
x , s

−
r,xi

through Ex. Similarly, we also impose the255

glyph style contrastive loss LEy

sty to improve the glyph256

encoder. Furthermore, the total style contrastive loss can be 257

defined as: 258

Lsty = LEx
sty + LEy

sty. (2)

3.4 Style Similarity Attention 259

To make full use of the style similarity between positive sam- 260

ples and original samples as auxiliary information for syn- 261

thesizing disentangled style features, we introduce a style 262

similarity attention module at the end of the style encoders. 263

Specifically, we use the style features of positive samples as 264

K and V, and use the style features of original images as Q. 265

Style similarity attention can be expressed as: 266

SSA(Q,K, V ) = softmax(
f · f+T

σ
)f+, (3)

where f, f+ are style features from the original image and 267

positive sample, and σ factor follows Attention Mechanism 268

[Vaswani et al., 2017] to prevent the magnitude of the dot 269

product from growing extreme. 270

Overall, our proposed contrast-based style encoders en- 271

courage the encoders to have more robust style disentangle- 272

ment ability. The SSA enhances the prominent glyph-effect 273

characteristics by amplifying the specific style signal strength 274

to obtain a pure glyph or effect representation. 275

3.5 Hierarchical Dual Styles AdaIN 276

Since neural networks are easier to retain abstract informa- 277

tion in high-dimensional layers and easier to retain color in- 278

formation in low-dimensional layers [Gatys et al., 2016], we 279

propose an artistic font generator based on hierarchical dual 280

styles AdaIN. Specifically, we pass the disentangled glyph 281

features and effect features through a fully connected layer 282

(FC) to obtain high- and low-dimensional glyph style sig- 283

nals, respectively. Here, we input the glyph signal into the 284

AdaIN layer [Huang and Belongie, 2017] of the generator 285

and fuse the content information through high-dimensional 286

connections, so that the generator can determine the overall 287

outline and structural pattern in the early stage of genera- 288

tion. Furthermore, the effect signal is input to the genera- 289

tor through low-dimensional connections to render the color 290

and texture details of the artistic font based on the established 291

glyph. Formally, we use the style encoders and SSA to ex- 292

tract the effect feature fxi
and glyph features fyj

, and input 293

them to the fully connected layer. The fully connected layer 294

aims to align fxi and fyj with the channel means and vari- 295

ances of the content inputs fzk , and to use fxi and fyj as the 296

adaptive affine parameters of the AdaIN layer (i.e., w and 297

b). Ultimately, we achieve a progressive reorganization of the 298

content with glyph and effect using hierarchical dual styles 299

AdaIN: 300

f l+1
zk

=

 wyj
(
f l
zk

−µ

σ ) + byj , l ≤ h

wxi
(
f l
zk

−µ

σ ) + bxi
, l > h

(4)

where l denotes the current layer number and h denotes the 301

threshold for dividing the high-dimensional AdaIN layers and 302

the low-dimensional AdaIN layers. 303



Methods Disentangled Style Training L1 loss ↓ FID ↓ SSIM ↑ GOLM ↓ EPE ↓
Non-zero-shot methods for synthesizing seen style compositions

AGIS-Net [Gao et al., 2019] × paired 0.2277 107.01 0.4313 81.025 4.3981
FET-GAN [Li et al., 2020a] × paired 0.2005 100.56 0.4474 68.820 7.5113
StarGANv2 [Choi et al., 2020] × unpaired 0.2997 72.24 0.3647 82.934 3.7708

Zero-shot methods for synthesizing unseen style compositions

GZS-Net [Ge et al., 2021] ✓ paired 0.2460 140.35 0.3648 87.328 7.2335
DSE-Net [Li et al., 2022a] ✓ paired 0.1754 72.19 0.4428 83.345 3.7332
Ours ✓ unpaired 0.1271 64.79 0.5883 73.225 3.0734

Table 1: Quantitative comparison of the CAFS-GAN and the existing state-of-the-art methods.

3.6 Full objective304

Our full objective functions can be summarized as follows:305

min
G,E

max
D

λstyLsty + λadvLx
adv + λadvLx

adv, (5)

where λsty and λadv are hyperparameters. The Lx
adv and306

Ly
adv denote two adversarial loss terms for the effect discrim-307

inator and glyph discriminator:308

Lx
adv = E[logDxi

(sxi
) + log(1−Dxi

(sxi,yj ,zk))], (6)
309

Ly
adv = E[logDyj

(syi
) + log(1−Dyj

(sxi,yj ,zk))], (7)

where Dxi(·) and Dyj (·) denote the logits from the domain-310

specific (xi) effect discriminator and domain-specific (yj)311

glyph discriminator. sxi,yj ,zk denote the generated artistic312

font image with three specific attributes.313

4 Metrics314

In order to better evaluate the generated glyphs and effects,315

we propose two kinds of new quantitative measures, GOLM316

for glyph and EPE for effect. Meanwhile, we also use three317

classic quantitative measures, such as L1, SSIM, and FID.318

Glyph outline misalignment (GOLM). GOLM is used to319

evaluate whether the edge information of the generated artis-320

tic font is correct and complete. Firstly, we convert the images321

I to its grayscale Igray, and calculate horizontal and vertical322

directions gradients using the Sobel operator. By summing323

the root mean square of the gradients in the two directions,324

we can get the final gradient of each pixel. The formula for325

GOLM is as follows:326

GOLM =
∣∣Iedge − I ′edge

∣∣ , (8)
327

Iedge =
√

(A · Igray)2 + (B · Igray)2, (9)

where Iedge and I ′edge denote the edge image of the real image328

and generated image. A and B denote horizontal and vertical329

Sobel matrixs.330

Effect perception error (EPE). The visual communication331

of effect is often presented in the form of texture in artis-332

tic font images. EPE is used to evaluate whether the tex-333

ture information of the generated image is accurate. First, we334

use the VGG19 [Simonyan and Zisserman, 2014] network to335

calculate the feature maps of the image in the deep layers,336

and then obtain the texture gram matrix [Gatys et al., 2016] 337

through the inner product operation to represent the texture 338

features. Then, EPE can be formulated as follows: 339

EPE =
1

n

n∑
i=1

(Gi − G′
i)

2, (10)

where n denotes the number of network layers involved in 340

the calculation of feature maps, Gi and G′
i denote the gram 341

matrixs calculated in the i-layer network of the real image 342

and the generated image. 343

5 Experiments 344

5.1 Datasets 345

SSAF Dataset. SSAF [Li et al., 2022a] contains a large 346

number of high-quality Chinese and English artistic images, 347

with annotations for their glyphs, effects, and content. 348

Fonts Dataset. Fonts [Ge et al., 2021] is a computer gener- 349

ated RGB font image dataset. It consists of 52 English letters 350

with 5 independent attributes: letter identity, font size, font 351

color, background color, and glyph. 352

5.2 Implementation Details 353

In our experiments, all images are resized to 128×128 pixels. 354

The hyperparameters are set as: λadv = 1.0 and λsty = 0.1. 355

In training, we set the batch size as 8 and train 105 iterations 356

for Chinese artistic font generation and 2× 104 iterations for 357

English. The learning rate is set to 0.0001, using Adam op- 358

timizer. Regarding the division of all possible style composi- 359

tions, we set the proportion of the number of style composi- 360

tions in Cu to Ct to be 1: 8. In each category of artistic font, 361

775 Chinese characters and 22 uppercase English letters are 362

used for training. 197 Chinese characters and 4 uppercase 363

English letters are used for testing. 364

5.3 Comparison with SOTA Methods 365

Quantitative comparison. We compare three non-zero-shot 366

methods, such as AGIS-Net [Gao et al., 2019], FET-GAN [Li 367

et al., 2020a], and StarGANv2 [Choi et al., 2020]. The style 368

(glyph-effect) compositions of the target artistic fonts synthe- 369

sized by them are seen in the training. Meanwhile, we also 370

compare two zero-shot methods, such as GZS-Net [Ge et al., 371

2021] and DSE-Net [Li et al., 2022a]. The style composi- 372

tions they synthesized are unseen during training. In Table 1, 373
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Content Glyph Effect

Figure 4: Comparison with state-of-the-art methods. Manual results by human are shown in the last column as ground truth. Six rows of
experimental results correspond to (1) Chinese artistic font with normal glyph. (2) Creative glyph. (3) Handwriting glyph. (4) Calligraphy
glyph. (5) English artistic font with simple effect. (6) English artistic font with delicate effect.

Baseline

Content Glyph Effect Baseline

(B)

(C) Target(A) (B) (D) (E)

Figure 5: Ablation study of CAFS-GAN. The Baseline includes three encoders and a generator without two style contrastive losses and SSA,
and it receives two style vectors that have been spliced in the basic AdaIN layer. The setup of 5 groups of experiments: (A) adding LEx

sty to
the Baseline, (B) incrementally adding LEy

sty , (C) incrementally adding SSA, (D) replacing AdaIN with a reverse version of hierarchical dual
styles AdaIN based on (C). (E) incrementally adding hierarchical dual styles AdaIN based on (C). The setup of experiment (E) denotes the
full of CAFS-GAN.

the CAFS-GAN proposed by us has achieved apparent advan-374

tages in synthesizing unseen style compositions. Moreover,375

the synthesized results by CAFS-GAN are also ahead of the376

conventional artistic font synthesis methods in five metrics.377

Qualitative comparison. In Figure 4, our method has gen-378

erated photo-realistic glyph and effect style and is superior379

to other methods. We can easily observe that some meth-380

ods work well in the normal glyph, but their performance in381

creative, handwriting, and calligraphy drops sharply. For En-382

glish, some methods are difficult to generate the correct glyph383

and effect (e.g., DSE-Net), and the othes are difficult to gen-384

erate the correct character content (e.g., GZS-Net).385

5.4 Ablation Study386

We conducted ablation study to validate the effectiveness of387

the components and loss functions of the model. The experi-388

mental results are depicted in Figure 5 and Table 2.389

Style contrastive losses. The purpose of style contrastive390

losses is to disentangle the glyph and effect and improve the391

encoder’s ability to extract pure glyph and effect features. In392

Figure 5(A), after we add LEx
sty , the dark red effect disappears 393

obviously and the correct metal texture effect appears. After 394

we simultaneously add LEx
sty and LEy

sty , the glyph structure of 395

(B) becomes more accurate than (A). 396

Style similarity attention. The SSA makes use of the style 397

similarity between the positive and original samples to en- 398

hance the feature signal of the glyph and effect. We add SSA 399

to the setup of experiment (B). In Figure 5(C), the stroke on 400

the left side of this character has been significantly improved. 401

Hierarchical dual styles AdaIN. This structure helps the 402

model to synthesize artistic fonts from structure to texture 403

through hierarchically input to improve image details. The 404

reverse version of this structure treats the glyph as low- 405

dimensional information and the effect as high-dimensional 406

information. We add the reverse version of hierarchical dual 407

styles AdaIN to the setup of experiment (C). Figure 5 (C)(D) 408

shows that the reverse version will lose a lot of effects and 409

glyph details. Then, we add the right version of hierarchical 410

dual styles AdaIN to the setup of experiment (C). Figure 5 411

(C)(E) shows the optimization of image details. 412



L1 loss ↓ FID ↓ SSIM ↑ GOLM ↓ EPE ↓
Baseline 0.2750 261.08 0.3039 189.29 2.6751
(A) 0.2852 257.73 0.2653 187.51 3.9582
(B) 0.2336 201.66 0.3345 183.83 2.0330
(C) 0.2290 178.07 0.3333 182.81 1.2076
(D) 0.2452 262.31 0.3099 185.10 1.6954
(E) 0.2251 179.61 0.3520 179.25 1.0767

Table 2: Quantitative evaluation of ablation study.

Figure 6: Influence of the proportion of seen style compositions.
The x-coordinate represents the proportion of Ct to C, and the y-
coordinate represents the value of each metric.

5.5 Proportion of the Seen Style Compositions413

We also discussed the influence of the proportion of seen style414

composition Ct to all possible style compositions C on the ex-415

perimental results. We use six different training sets to train416

CAFS-GAN, each containing the same three effects and three417

glyphs, but their number of compositions is different. The418

ratios of style combinations of Ct to C are set to 4/9, 5/9,419

6/9, 7/9, 8/9, and 9/9. As shown in Figure 6, with the pro-420

portion increase, the model’s performance presents an over-421

all improved state. Therefore, we concluded that sufficient422

glyph-effect joint compatibility relationship will improve the423

model’s ability to understand the artistic font’s attributes and424

help the model synthesize unseen style compositions.425

5.6 Visualization426

In order to further demonstrate the style disentanglement ca-427

pability of the Ex and Ey and the ability to recombine content428

and styles of the generator, we visualize the attention maps429

generated by style encoders and feature maps generated by430

the generator. In Figure 7(a), we feed three different effects431

of the artistic font images to 1 and 1, and the texture part of432

these images got a lot of attention. In Figure 7(b), the glyph433

encoder tends to focus on local areas of artistic fonts, which434

are the unique characteristics of the glyphs, such as curves435

and corners. In Figure 7(c), the structure of feature maps of436

fonts are changed firstly (e.g., the lines become clear, and the437

corners become apparent). Then, there is more pixel filling438

inside the feature maps of the font. After that, the texture is439

rendered.440

(a) The effect encoder's attention to effect (b) The glyph encoder's attention to glyph

(c) The evolution of glyph and effect in generator

Glyph transformation Effect transformation
Content Results

Figure 7: The visualization of the style attention maps and generated
feature maps. (a)(b) We show the original images (in the first row)
and their attention maps of glyph and effect (in the second row) in
two style encoders. (c) We show how the generator adjusts the struc-
ture and then renders the effect.

Glyph-A Glyph-B Glyph-C

Effect-A Effect-B Effect-C

Figure 8: Glyph style interpolation and effect style interpolation.

5.7 Style Interpolation 441

We further demonstrate the flexibility of CAFS-GAN through 442

glyph style interpolation and effect style interpolation. In 443

CAFS-GAN, we can explicitly control the weighting between 444

different glyph or effect representations and decode the inte- 445

grated representation back to the image space, obtaining the 446

new mixed attributes, see Figure 8. This is meaningful to the 447

diversification of artistic fonts. 448

5.8 Conclusion 449

In this paper, we propose a new task called compositional 450

zero-shot artistic font synthesis (CAFS), which allows syn- 451

thesizing arbitrary character’s artistic font image with un- 452

seen style compositions. To achieve this task, we propose 453

the CAFS-GAN model, focusing on style disentanglement of 454

glyph and effect, and hierarchical reorganization of content 455

and styles representations. We also propose two evaluation 456

metrics for a more comprehensive evaluation of artistic font 457

images: glyph outline misalignment and effect perception 458

error. Extensive experiments demonstrate the effectiveness 459

of our model’s multi-attributes control and the superiority of 460

generation quality over existing methods. 461
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