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ABSTRACT
Multimodal recommendation aims at to modeling the feature dis-
tributions of items by using their multi-modal information. Prior
efforts typically focus on the denoising of the user-item graph with
a degree-sensitive strategy, which may not well-handle the users’
consistent preference across modalities. More importantly, it has
been observed that existing methods may learn ill-posed item em-
beddings due to their focus on a specific auxiliary optimization
task for multimodal representations rather than explicitly model-
ing them. This paper therefore presents a solution that takes the
advantages of the explicit uncertainty injection ability of Diffusion
Model (DM) for the modeling and fusion of multi-modal infor-
mation. Specifically, we propose a novel Multimodal Conditioned
Diffusion Model for Recommendation (MCDRec), which tailors DM
with two technical modules to model the high-order multimodal
knowledge. The first module is multimodal-conditioned represen-
tation diffusion (MRD), which integrates pre-extracted multimodal
knowledge into the item representation modeling via a tailored DM.
This smoothly bridges the insurmountable gap between the multi-
modal content features and the collaborative signals. Secondly, with
the diffusion-guided graph denoising (DGD) module, MCDRec may
effectively denoise the user-item graph by filtering the occasional
interactions in user historical behaviors. This is achieved with the
power of DM in aligning the users’ collaborative preferences with
their shared items’ content information. Extensive experiments
compared to several SOTA baselines on two real-word datasets
demonstrate the effectiveness of MCDRec. The specific visualiza-
tion also reveals the potential of MRD to precisely handling the
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high-order representation correlations among the user embeddings
and the multi-modal heterogeneous representations of items.
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1 INTRODUCTION
Recommender system (RS) aims to predict the appropriate items by
modeling users’ historical behaviors [14, 18]. However, the ubiq-
uity of the extensive corpus and the Matthew effect inevitably
engenders the sparsity issue in real-world RSs [17]. As a straight-
forward method, multimodal recommendation is proposed to use
the multi-modal information to enhance the item representation
modeling. Its focal issue lies in how to mitigate the bias between
the pre-extracted multi-modal features and collaborative signals to
smoothly facilitate its adaptation to recommendation tasks. [15, 19]

Inspired by the notable achievement of graph representation
learning, recent studies integrate the multi-modal information into
user-item interaction graph to enhance recommendation [25, 29].
SLMRec [25] and BM3 [35] introduce self-supervised multi-modal
signals to capture the content consistency among multiple modal-
ities. LATTICE [33] constructs the item-item correlation graph
for each modality and dynamically updates it to capture the high-
quality item representation. FREEDOM [34] further freezes the
item-item graph and designs a simple degree-sensitive denoising
strategy for efficient recommendation. Recently, LD4MRec [31]
attempts to leverage the notable generative capacity of diffusion
models (DM) to generate interaction probabilities with the guidance
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Figure 1: BM3 (IE) (replacing multi-modal knowledge with
the pre-trained item embedding in LightGCN) achieves the
comparable performance with the original BM3 on Baby
and Sports, which verifies that the multi-modal information
in BM3 is underutilized. In contrast, our MCDRec explicitly
integrates themulti-modal representations in the continuous
space through a tailoredDMbased onBM3, thereby achieving
more effective utilization of multi-modal information.

of multi-modal knowledge, which follows the prevailing DM-based
recommenders [16, 28] to conduct DM on discrete item indices.

To investigate whether existing multimodal recommenders fully
leverage the multi-modal knowledge, we leverage the pre-trained
item embeddings from LightGCN [6] to replace the multi-modal
representation in BM3 [35] to define the BM3 (IE). The perfor-
mance comparisons between LightGCN, BM3 and BM3 (IE) on
Baby and Sports are illustrated in Fig. 1. This demonstrates that
BM3 without multi-modal knowledge is able to yield a compara-
ble performance with the original BM3, that is, the multi-modal
information embedded in BM3 [35] remains underutilized. More-
over, we conduct the empirical analysis that the discrete DM in
LD4MRec [31] encounters challenges in attaining optimal multi-
modal recommendation performance, which is primarily due to the
insurmountable gap between continuous multimodal representa-
tions and discrete item indices. The informational processing mis-
alignment between the multimodal recommendation tasks and the
pure index-driven recommendation tasks (e.g., SR) also brings sub-
optimal performance when indiscriminate implementing existing
DM-based recommenders to handle multi-modal representations.
These discoveries prompts us to some questions: (1) Is there con-
crete evidence that multi-modal information indeed plays a role
in multimodal recommendation tasks? (2) Could advanced diffu-
sion models explicitly integrate multi-modal knowledge into the
collaborative signals to support multimodal recommendation tasks?

To answer these questions, we began to explore the feasibility
of incorporating the uncertainty injection [7] and the multi-modal
alignment guidance [1] of DM into the multimodal recommenda-
tion. We propose an effectiveMultimodal Conditioned Diffusion
Model for Recommendation (MCDRec), which serves as the model-
agnostic framework to jointly model the multi-modal guidance
and the diffused guidance in elevating the existing multimodal
recommenders. Specifically, MCDRec first designs the Multimodal-
conditioned Representation Diffusion (MRD) module to gradually
inject the modality-aware uncertainties into item representations
via a tailored DM structure, thus explicitly integrating the multi-
modal information and smoothing the significant deviation between
modal-aware features and collaborative signals to improve the item

representation learning. In order to filter the inherent noise in user
behaviors and preserve the user’s modality-aware preferences, MC-
DRec additionally proposes a Diffusion-guided Graph Denoising
(DGD) module, which fully leverages the diffusion-aware item rep-
resentations from MRD to accurately denoise the user-item graph.
With such two effective modules, MCDRec can seamlessly combine
the tailored DM with existing multimodal recommenders, thereby
ensuring the generalization capacity and high-dimensional distri-
bution fitting capacity of DM are comprehensively exploited in
multimodal recommendation from start to finish.

We have conducted extensive experiments on two real-world
datasets to demonstrate the effectiveness and universality of MC-
DRec. Through the ablation study and visualization analysis, we
also verify the validity of each module in our MCDRec. To sum-
marise, MCDRec’s contribution can be concluded as follows:
• We propose a multimodal recommendation framework, MCDRec,
which jointly models the multi-modal guidance and the diffused
guidance to enhance multimodal recommenders. To the best of
our knowledge, this is a pioneering solution that models the con-
tinuous representation via DM in multimodal recommendation.

• We develop two effective and model-agnostic MRD and DGD
modules to incorporate multimodal-guided diffusion knowledge
at each phase of multimodal recommendation, enabling the seam-
less integration of the DM with multimodal recommendation.

• We conduct visualization analysis to uncover the superiority of
MCDRec in precisely handling the correlations among hetero-
geneous representations of users and items, which enables a
comprehensive understanding of MCDRec.

2 RELATEDWORK
2.1 Multimodal Recommendation
Multimodal recommendation aims to incorporate the multi-modal
information of items into the representation learning, thereby alle-
viating the data sparsity issue in recommendation. Early studies [5]
typically inject the pre-extracted visual features of each item from
Convolution Neural Network (CNN) into the original index embed-
ding to capture the visually-aware item representations. Inspired
by the success of Graph Convolutional Networks (GNNs) in recom-
mendation, recent researchers start to leverage the graph structure
to handle the multi-modal information. MMGCN [29] first incorpo-
rates it to build the user-item bipartite graph for specific modalities.
BM3 [35] designs a multi-modal contrastive task to bootstrap la-
tent representations towards to overcome the computational cost
and noisy supervisory signaling issues. To precisely capture the
implicit item representation, LATTICE [33] designs the item-item
relation graphs for each modality to learn modality-aware struc-
ture knowledge. FREEDOM [34] freezes the item-item graphs and
designs a structure denoising module on the basis of LATTICE [33]
for efficient recommendation. Recently, LD4MRec [31] conducts
DM on discrete item indices to generate user behaviors with the
guidance of multi-modal representation and collaborative signals.

However, the challenges in existing multimodal recommenda-
tion algorithms are two-fold: Firstly, the experiments in Table. 1
have verified that certain multimodal recommenders fail to fully
utilize the multi-modal information, which is the fundamental basis
of multimodal recommendation. Secondly, although LD4MRec [31]
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has investigated the efficacy of DM in multimodal recommenda-
tion, it solely leverages the continuous multi-modal representations
for predicting discrete interaction probabilities. The inherent bias
between these two aspects makes it challenging to achieve optimal
performance under the standard training setting (cf. Table 2 in [31]).

2.2 Diffusion Models in Recommendation
Motivated by the uncertainty injection and data augmentation
ability of Diffusion Models (DM) in image synthesis [22], text gen-
eration [10], and machine translation [32], some studies have ex-
plored the effectiveness of DM in recommendation. For instance,
DiffRec [28] gradually generates globally similar but personalized
collaborative information via DM in the denoising process. PDRec
[16] creatively proposes three plug-in modules to fully leverage
the diffusion-based preferences on all items to improve SR models.
LD4MRec [31] employs DM on discrete item indices with the guid-
ance of continuous multi-modal representations. Different from
these above studies that conduct DM on the discrete item indices,
several DM-based recommenders employ that on the continuous
item embedding space to enhance representation learning in SR.
DiffuRec [11] regards the various aspects of items and the multiple
user intentions as distributions to fully exploit the inherent distri-
bution generation capability of DM. DreamRec [30] utilizes DM to
explore the underlying distribution of item space and generate the
oracle items with the guidance of users’ sequential behaviors.

Although these DM-based recommenders have demonstrated
promising performance on discrete item indices and continuous
item representations, they are not explicitly designed to handle
multi-modal information. Therefore, mechanically applying them
to multimodal recommendation tasks may result in a decline in
its performance. Furthermore, with the dependency of multimodal
recommendation tasks on continuous multi-modal representations,
we argue that employing continuous multi-modal representations
as conditions to guide discrete DM is not the optimal choice. Instead,
unifying them into the continuous feature space is deemed more
suitable for the problem setting of multimodal recommendation.

3 METHODS
3.1 Problem Formulation
The objective of multimodal recommendation resides in utilizing
the additional multi-modal information of items to obtain more
accurate item representations in recommendation. In this work, we
first define 𝒆𝑢𝑢 ∈ R𝑑 and 𝒆𝑖

𝑖
∈ R𝑑 as the user embedding and item

embedding of the user 𝑢 ∈ U and the item 𝑖 ∈ I respectively. Here,
𝑑 denotes the embedding dimension, U and I denote the set of
users and items. To incorporate the multi-modal knowledge, we
leverage 𝑣 and 𝑡 to represent the visual and textual modalities. With
this specific modality𝑚 ∈ {𝑣, 𝑡}, we represent the corresponding
modality feature as 𝒆𝑚 ∈ R𝑑𝑚 where 𝑑𝑚 denotes its dimension.
Given these three types of latent representation 𝒆𝑖

𝑖
, 𝒆𝑣
𝑖
and 𝒆𝑡

𝑖
of the

same item 𝑖 1, we can improve the item representation learning in
multimodal recommendation to predict the preference scores of a
specific user on each item.

1For brevity, we omit the subscript 𝑖 in 𝒆𝑖
𝑖
, 𝒆𝑣

𝑖
and 𝒆𝑡

𝑖
and the subscript 𝑢 in 𝒆𝑢𝑢 in the

following sections.

3.2 Overall Framework
In this section, we detail our proposed Multimodal Conditioned Dif-
fusion Model for Recommendation (MCDRec), which incorporates
multi-modal information into the item representation modeling
process through a tailored DM and leverages the diffusion-aware
knowledge into the user-item interaction graph for accurate denois-
ing. As shown in Fig. 2, MCDRec consists of two main components,
including multimodal-conditioned representation diffusion (MRD)
and diffusion-guided graph denoising (DGD). Specifically, MCDRec
first proposes MRD to guide the more precise item representations
learning with the condition as multi-modal features, aiming to in-
corporate the modality-specific uncertainty. In order to achieve
accurate denoising on the interaction graph, MCDRec designs a
DGD strategy that leverage the diffusion-aware knowledge from
MRD to identify real noise edges and smoothly prune them to
consistently maintain the relative noise-free interaction graph.

3.3 Base multimodal recommender
Inspired by the success in graph representation learning in rec-
ommendation, we adopt BM3 [35] as the base multimodal recom-
mender in this work. Given the modality-specific pre-extracted
feature 𝒆𝑚

𝑖
∈ R𝑑𝑚 of item 𝑖 , we first conduct a Multilayer Percep-

tron (MLP) to get the hidden modality-aware representation 𝒉𝑚
for the modality𝑚 as following:

𝒉𝑚𝑖 = MLP𝑚 (𝒆𝑚𝑖 ) = 𝒆𝑚𝑖 W𝑚 + 𝒃𝑚 (1)

whereW𝑚 ∈ R𝑑𝑚×𝑑 , 𝒃𝑚 ∈ R𝑑 denote the weight matrix and the
bias vector respectively.

Then, we leverage LightGCN [6] to encode the user-item inter-
action graph as G = (V, E), where V = U ∪ I and E denote

the nodes and edges of this graph. Besides, A =

(
0 R

R⊤ 0

)
∈

R |V |× |V | and D are leveraged to represent the adjacency matrix
and the diagonal degree matrix of G, where R is the user-item in-
teraction matrix. We also denote the initial index embeddings of all
the nodes in graph G as H0 = [𝒆𝑢1 , 𝒆

𝑢
2 , · · · , 𝒆

𝑢
|U | , 𝒆

𝑖
1, 𝒆

𝑖
2, · · · , 𝒆

𝑖
| I | ].

With the feed-forward propagation, we can obtain the hidden index
embeddings H𝑙+1 of the (𝑙+1)-th layer from the the hidden index
embeddings H𝑙 of the 𝑙-th layer as following:

H𝑙+1 = ÂH𝑙 =
(
D−1/2AD−1/2

)
H𝑙 (2)

To generate the ultimate node representations of users and items
for the consequent recommendation phase, we also utilize a readout
function to aggregate all representations from all the hidden layers.
Following [33, 35], we also conduct a residual connection to incor-
porate the initial item embeddings H0

𝑖
into the final representation

for items Hi. This process can be succinctly expressed as follows:

Hu = READOUT
(
H0
𝑢 ,H1

𝑢 ,H2
𝑢 , . . . ,H𝐿𝑢

)
Hi = READOUT

(
H0
𝑖 ,H

1
𝑖 ,H

2
𝑖 , . . . ,H

𝐿
𝑖

)
+ H0

𝑖

(3)

where 𝐿 denotes the number of convolutional layers.
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Figure 2: The overall structure of MCDRec. MRD explicitly incorporates the multi-modal knowledge into item representation
modeling via the tailored DM while DGD strategy leverages the diffusion-aware user preference consistency on multiple
modalities for better user behaviors denoising.

3.4 Multimodal-conditioned Representation
Diffusion

In this section, we will detail our Multimodal-conditioned Repre-
sentation Diffusion (MRD) based on the Denoising Diffusion Prob-
abilistic Models (DDPM) framework [7]. Inspired by the promising
success of DM in Computer Vision (CV) and Natural Language
Processing (NLP), some researchers have started to explore DM
in recommendation. However, these DM-based recommendation
models typically employ the tailored diffusion model on the direct
item indices [16, 28] or the continuous item embeddings [11, 30],
overlooking the multi-modal knowledge modeling. Different from
these prior algorithms, we attempt to incorporate multi-modal in-
formation as the conditions into the diffusion process, with the
aim of guiding the generation of item representations. Similar to
the classical DM-based recommendation algorithms, the proposed
MRD consists of two processes: the forward process and the reverse
process. The forward process involves the gradual addition of the
Gaussian noise to perturb the original data distribution. In contrast,
the reverse process gradually recovers the perturbed representation
from the disorder-state to the representation space.

3.4.1 Forward Process. Without loss of generality, we firstly denote
𝒙0 as the initial index embedding 𝒆𝑖 for item 𝑖 ∈ I in MRD. The
forward process constitutes a Markov Chain that Gaussian noise is
gradually incorporated into 𝒙0 as follows:

𝑞 (𝒙1:𝑇 | 𝒙0) :=
𝑇∏
𝑡=1

𝑞 (𝒙𝑡 | 𝒙𝑡−1)

𝑞 (𝒙𝑡 | 𝒙𝑡−1) := N
(
𝒙𝑡 ;

√︁
1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡 𝑰

) (4)

where 𝑡 denotes the diffusion steps and 𝛽𝑡 ∈ (0, 1) denotes the added
Gaussian noise scale. Utilizing the reparameterization trick [13],
we can aggregate the noising process at each step. Consequently,
the forward process can be formulated as:

𝑞 (𝒙𝑡 | 𝒙0) = N
(
𝒙𝑡 ;

√
𝛼𝑡𝒙𝑡 , (1 − 𝛼𝑡 ) I

)
(5)

Let 𝜖∼N(0, I) , 𝛼𝑡 =1 − 𝛽𝑡 and 𝛼𝑡 =
∏𝑡
𝑡 ′=1 𝛼𝑡 ′ , then we can acquire

that 𝒙𝑡 =
√
𝛼𝑡𝒙0 +

√
1 − 𝛼𝑡𝝐 .

3.4.2 Reverse Process. As the core phase of the diffusion model,
the reverse process aims to iteratively denoise 𝒙𝑡 for 𝑡 steps to
ultimately approximate the initial item representation 𝒙0. Notably,
we incorporate the multi-modal knowledge of items as the addi-
tional conditions to guide the conditional generation of item rep-
resentations via a tailored conditional estimator. The conditional
generation process at each step 𝑡 can be formulated as:

𝑝𝜃 (𝒙0:𝑇 ) = 𝑝 (𝒙𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝒙𝑡−1 | 𝒙𝑡 )

𝑝𝜃 (𝒙𝑡−1 | 𝒙𝑡 ) = N
(
𝒙𝑡 ; 𝜇𝜃

(
𝒙𝑡 , 𝑡,𝒉

𝑣
𝑖 ,𝒉

𝑡
𝑖

)
, Σ𝜃 (𝒙𝑡 , 𝑡)

) (6)

where Σ𝜃 (x𝑡 , 𝑡)=𝜎2
𝑡 I= 1−𝛼𝑡−1

1−𝛼𝑡 𝛽𝑡 I denotes the variance and 𝒉𝑣𝑖 ,𝒉
𝑡
𝑖
∈

R𝑑 are visual and textual latent representation of the same item 𝒊

respectively. Here, the mean 𝜇𝜃

(
𝒙𝑡 , 𝑡,𝒉𝑣𝑖 ,𝒉

𝑡
𝑖

)
can be calculated by:

𝜇𝜃
(
𝒙𝑡 , 𝑡,𝒉

𝑣
𝑖 ,𝒉

𝑡
𝑖

)
=

1
√
𝛼𝑡

(
𝒙𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝑓𝜃
(
𝒙𝑡 , 𝑡,𝒉

𝑣
𝑖 ,𝒉

𝑡
𝑖

) )
(7)

The conditional estimator 𝑓𝜃 (.) is typically constructed by many
deep neural networks (e.g., MLP [28], Transformer [11] or U-Net
[12]) to generate the estimated item representation with the multi-
modal informative knowledge. After 𝑡 steps, we could obtain the
predicted 𝒙̂0 as 𝒙𝑝 . To preserve the personalized features of items
while introducing diffused multi-modal information, we denote
𝒆̃ = 𝒙0 + 𝜔 · 𝒙𝑝 as the final item representation for the subsequent
recommendation task, where 𝜔 is the pre-defined diffused weight.

3.4.3 Conditional Estimator. In this section, we will introduce our
designed conditional estimator, a tailored model architecture on U-
Net, to adapt to multimodal-guided diffusion. U-Net [24] is widely
utilized in diffusionmodels to enhance various CV andNLP tasks, in-
cluding image synthesis [7], image super-resolution [9] and seman-
tic segmentation [2]. It is principally ascribed to the heightened pro-
ficiency exhibited by U-Net in adeptly handling high-dimensional
distributions. Therefore, directly incorporating the raw structure
of U-Net into a 1-dimensional vector may result in sub-optimal
performance.

To tackle this issue, we regard the estimated item representation
𝒙𝑝 , the visual representation 𝒉𝑣

𝑖
, and the textual representation
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𝒉𝑡
𝑖
∈ R𝑑 as the separate channels in U-Net to capture informative

knowledge from diverse item modalities, as channels are indepen-
dently modeled with the convolutional network. To fully leverage
the advantage of receptive-field in convolutional networks, we
reshape these representations as channels matrices C𝑖

𝑖𝑛
, C𝑣

𝑖𝑛
and

C𝑡
𝑖𝑛

∈ R
√
𝑑×

√
𝑑 and subsequently fed them into U-Net. Moreover,

we also add the step representation 𝒕𝑖 in conjunction with above
channels matrices to each convolutional neural network block,
thus facilitating the fusion of step information and item represen-
tation. Here, 𝒕𝑖 is generated from the scalar diffusion step 𝑡 by
sinusoidal embedding technique. With the forward propagation of
U-Net, we can obtain the estimated channel matrices C𝑖𝑜𝑢𝑡 , C𝑣𝑜𝑢𝑡
and C𝑡𝑜𝑢𝑡 ∈ R

√
𝑑×

√
𝑑 and recover the C𝑖𝑜𝑢𝑡 back to the estimated

representation 𝒙̂0 ∈ R𝑑 . After such operations, the diffusion step 𝑡
and multi-modal embeddings 𝒉𝑣

𝑖
and 𝒉𝑡

𝑖
can simultaneously used

to precisely condition the estimation of 𝒙̂0.

3.4.4 Optimization. Similar to the optimization of the underlying
data generation distribution in other generation tasks, DM also
compels the posterior distribution 𝑞 (𝒙𝑡−1 | 𝒙𝑡 , 𝒙0) closer to the
prior distribution 𝑝𝜃 (𝒙𝑡−1 | 𝒙𝑡 ) during the reverse process. This
optimization function is expressed in the form of KL divergence:

L𝑣𝑙𝑏 = 𝐷𝐾𝐿 (𝑞 (𝒙𝑡−1 | 𝒙𝑡 , 𝒙0) ∥𝑝𝜃 (𝒙𝑡−1 | 𝒙𝑡 )) (8)

Thanks to the DDPM framework [7], it can be easily simplified to a
Mean-Squared Error (MSE) loss as follows:

L𝑑𝑚 = 𝐸𝒙0,𝒙𝑡

[

𝒙0 − 𝑓𝜃
(
𝒙𝑡 , 𝑡,𝒉

𝑣
𝑖 ,𝒉

𝑡
𝑖

)

2] (9)

Here, 𝑥0 denotes the initial item embedding, and 𝑓𝜃 refers to the
above conditional estimator to generate the estimated item repre-
sentation 𝑥0.

3.5 Diffusion-guided Graph Denoising
Previous graph-based recommendation studies have verified that
the occasional interactions in user behavioral sequence introduce an
inescapable semblance of noise into the user-item interaction graph
[3]. Graph structures are confronted with the issue of nodes with
higher popularity being more susceptible to over-smoothing. Most
existing graph denoising techniques randomly discard edges on
the graph at a certain percentage throughout the training process,
which are stochastic and potentially destroy the graph correlations.
Intuitively, the incorporation of multi-modal knowledge in recom-
mendation contributes substantively to user preference modeling
and item representation modeling. This assertion forms the foun-
dational underpinning of multimodal recommendation tasks. This
motivates us to investigate how to harness the diffused item repre-
sentations obtained in MRD to refine the extant graph denoising
strategies. To the end, we introduce a Diffusion-guided Graph De-
noising (DGD) strategy, which identifies the authentic noised edges
and smoothly prunes them by incorporating of the diffusion-aware
knowledge from MRD.

Specifically, given the user-item interaction graph G = (V, E),
and the specific edge 𝑒𝑢𝑖 in G, we can obtain the connected nodes
𝑢 and 𝑖 , and their corresponding representations as 𝒆𝑢𝑢 and 𝒆𝑖

𝑖
. With

the MRD module mentioned in Sec. 3.4, we inject the multi-modal
knowledge into the original item representation 𝒆𝑖

𝑖
to obtain the

Table 1: Statistics of two real-world multimodal datasets

Dataset #Users #Items #Interactions Sparsity
Baby 19,445 7,050 160,792 99.88%
Sports 35,598 18,357 296,337 99.95%

multimodal-enhanced diffused representation 𝒆̃𝑖 of item 𝑖 . Then we
compute the score 𝑠𝑢𝑖 = 𝒆⊤𝑢 𝒆̃𝑖 between the user embedding 𝒆𝑢 and
themultimodal-enhanced diffused representation 𝒆̃𝑖 as the diffusion-
aware interaction probability. For each edge 𝑒𝑢𝑖 in G, we can update
its weight as (1 + 𝜏 · 𝑠𝑢𝑖 ) where 𝜏 denotes the pre-defined score
weight and then re-calculate the degrees of the connected nodes 𝑢
and 𝑖 as 𝑑𝑢 and 𝑑𝑖 . Finally, we sample a denoised sub-graph G̃𝑠 from
the original user-item interaction graph G with the probability
𝑝𝑢𝑖 =

1√
𝑑𝑢

√
𝑑𝑖

of each edge 𝑒𝑢𝑖 in G until the number of edges in G̃𝑠
reach |E | (1 − 𝜌), where 𝜌 denotes the dropout proportion. Thus,
we can generate the new symmetric adjacency matrix A𝑠 based on
G̃𝑠 to achieve the graph denoising at the beginning of each training
epoch, and normalize it as: Â𝑠 = D−1/2A𝑠D−1/2. Following the
classical graph denoising method [23], we only conduct DGD in
the training phase while utilizing the original normalized matrix
A as the adjacency matrix in the inference phase to implement
the graph representation modeling. This further enables the low
computational complexity of MCDRec when serving online.

3.6 Optimization Objectives
With the final item representation 𝒙̃𝑖 obtained in MRD module
and the user embedding 𝒆𝑢 , we feed them into the DGD module to
generate the 𝒉𝑢 and 𝒉𝑖 as the final representation. Following the
classical multimodal recommendation algorithms [33, 34], we opt
the Bayesian personalized ranking (BPR) loss [21] for each user-
item triplet (𝑢, 𝑖, 𝑗) in training set R to force the score between user
𝑢 and positive item 𝑖 is higher than that of negative item 𝑗 :

L𝑏𝑝𝑟 =
∑︁

(𝑢,𝑖, 𝑗 ) ∈R

(
− log𝜎

(
𝒉⊤𝑢 𝒉𝑖−𝒉⊤𝑢 𝒉 𝑗

))
(10)

where 𝜎 (·) is the sigmoid function. The overall objective function
L can be formulated as a linear combination of L𝑏𝑝𝑟 and L𝑑𝑚 :

L = L𝑏𝑝𝑟 + 𝜆 · L𝑑𝑚 (11)
where 𝜆 is used to control the weight of L𝑑𝑚 .

4 EXPERIMENTS
In this section, we perform extensive experiments to answer the
following research questions:
• RQ1: How does MCDRec perform against the general CF meth-
ods and the SOTA multimodal recommendation methods?

• RQ2: How do different components of MCDRec benefit its rec-
ommendation performance?

• RQ3: How does MRD affect the distribution of user embeddings
and multi-modal item representations?

4.1 Datasets
Following previous works [34, 35], we conduct comprehensive
experiments on 𝐵𝑎𝑏𝑦 and 𝑆𝑝𝑜𝑟𝑡𝑠 from the Amazon platform. The
dataset includes both visual and textual features, and each review
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rating is considered a record of a positive user-item interaction. The
raw data of each dataset are pre-processed with a 5-core setting on
both items and users, which have been widely used in [5, 33, 35],
and the results are presented in Table. 1. Referring to [34], we
directly utilize the pre-extracted visual features with the dimension
as 4096. For textual features, we use the sentence-transformers
[20] to obtain 384-dimensional sentence embeddings. Moreover,
the metric of data sparsity is computed through the division of the
total interactions by the product of the number of items and users.

4.2 Baselines
To demonstrate the effectiveness of the proposed method, we com-
pare MCDRec with the following baseline models.

The first category consists of two general CF-based recommenders
which recommend personalized items to users based only on their
interactions with the items:
• BPR [21] enhances the latent representations of users and items
within the matrix factorization (MF) framework, employing a
BPR loss for optimization.

• LightGCN [6] simplifies GCN by dismissing the feature trans-
formation and nonlinear activation and using the hidden layer
embeddings for prediction.
While the second class of work consists of six multi-modal rec-

ommenders that utilize multi-modal information of items for rec-
ommendation:
• MMGCN [29] represent each modality of items individually by
GCN, and integrate these modal representations.

• SLMRec [25] adopts a self-supervised learning strategy, intro-
duces innovative data augmentation techniques, and utilizes a
contrastive learning loss.

• DualGNN [27] build the user co-occurrence graph to draw the
user’s attention to various modalities

• LATTICE [33] performs GCN on both user-item graph and item-
item graph to learn latent representations.

• BM3 [35] proposes a multi-modal contrastive task to bootstrap
latent representations by designing inter-modality and intra-
modality contrastive losses.

• FREEDOM [34] freezes the dynamic item-item graph in LAT-
TICE and proposes a degree-sensitive denoising strategy to de-
noise the user-item interaction graph.

4.3 Experimental settings
We implement the above methods with PyTorch 1.12.0 and Python
3.8.10. Following the classical works [33–35], we set the embedding
size of both users and items to 64 for all models. Moreover, we
initialize the embedding parameters using the Xavier method [4],
and optimize all models with the Adam [8] optimizer with the
learning rate as 0.001. To ensure a fair comparison, we carefully
adjust the parameters of each model with their published papers.
We perform a comprehensive grid search to select the optimal
universal hyper-parameters. To be specific, the number of GCN
layers is set to 2, and we fix the hyperparameter 𝜆 at 1𝑒 − 3. As for
the diffusion process, the steps 𝑡 is tuned in {5, 10, 20, 40, 100}. The
dropout rate 𝜌 of diffusion-guided graph denoising is serched from
{0.1, 0.3, 0.5, 0.8}. Respectively, the diffused weight 𝜔 and the score
weight 𝜏 are chosen from {0.05, 0.1, 0.3, 0.5, 0.8, 1.0}. Following [33],

we opt the early stopping strategy with 20 epochs and the total
epochs are set to 1000, while Recall@20 is the stopping indicator.

4.4 Performance Comparison (RQ1)
To verify the effectiveness of MCDRec, we conduct our experiments
on two real-world datasets to compare our MCDRec with various
CF-based recommenders and multimodal recommenders. As illus-
trated in Table. 2, we use NDCG@k (N@k) and Recall@k (R@k)
with 𝑘 in {5, 10, 20} as evaluation metrics and highlight the best
results in boldface. From this table, we can observe that:

(1) MCDRec significantly outperforms all the baselines across all
metrics and datasets. The improvements are larger with smaller 𝑘 ,
which is natural that the precise utilization of multi-modal knowl-
edge in MCDRec is more beneficial in mining users’ authentic
preference for the top positions.

(2) Comparing the recommendation performance between two
types of recommenders, most multimodal recommenders exhibit
superiority over CF-based recommenders across diverse datasets.
MCDRec achieves further improvements over the state-of-the-art
multimodal recommenders, which indicates that MCDRec can fully
harness the uncertainty injection ability of DM to explicitly in-
corporate multi-modal information into the item representation
modeling, thereby enhancing the representation learning in existing
multimodal recommenders.

(3) Upon analyzing the improvements on various base models,
MCDRec achieves the most substantial improvement over BM3
(without any graph denoise strategies). Furthermore, when in-
tegrated with the state-of-the-art baseline FREEDOM (with the
degree-sensitive denoising strategy), MCDRec obtains peak results
across all datasets. This highlights the ability of MCDRec to guide
the graph denoising towards the direction of user consistent pref-
erence modeling on the multi-modal content level of items.

4.5 Ablation Study (RQ2)
In this section, we conduct an ablation study to explore the effec-
tiveness of different components within MCDRec. Here, “BM3+MK”
denotes merely leveraging the fused multi-modal item representa-
tion MLP(𝒆𝑣 |𝒆𝑡 |𝒆𝑖 ) as the final item representation 𝒆̃ in BM3. It is
notable that MCDRec (BM3) is equivalent to BM3+DGD+MRD. By
comparing BM3, BM3+MK, BM3+MRD, BM3+DGD and MCDRec
(BM3), we can verify the benefits of our proposed MRD and DGD.
From Table. 3, we observed that:

(1) In general, BM3+MK performs worse than BM3, demonstrat-
ing that the simple fusion of multi-modal information and collab-
orative signals may introduce additional bias, hindering accurate
item representation modeling.

(2) Comparing BM3+MRD with BM3+MK on two real-world
datasets, we further discover the indispensability of MRD in our
MCDRec. This is mainly due to the fact that MRD leverages the
multi-modal information to conditionally guide the diffusion pro-
cess, introducing the information uncertainty of each modality into
item representations.

(3) With DGD, MCDRec achieves the best performance across
all datasets and metrics. This highlights the necessity of utilizing
diffusion knowledge to guide the graph denoising process, thereby
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Table 2: Performance comparison on Baby and Sports. Improvement stands for the relative improvement over its backbone.

Version Algorithms Baby Sports
R@5 R@10 R@20 N@5 N@10 N@20 R@5 R@10 R@20 N@5 N@10 N@20

CF-based
recommenders

BPR-MF [21] 0.0199 0.0389 0.0442 0.0145 0.0167 0.0200 0.0275 0.0376 0.0435 0.0167 0.0198 0.0208
LightGCN [6] 0.0282 0.0478 0.0746 0.0190 0.0250 0.0323 0.0342 0.0524 0.0804 0.0236 0.0296 0.0368

Multi-modal
recommenders

MMGCN [29] 0.0253 0.0403 0.0646 0.0170 0.0219 0.0281 0.0231 0.0371 0.0631 0.0150 0.0196 0.0263
SLMRec [25] 0.0438 0.0486 0.0741 0.0216 0.0271 0.0337 0.0418 0.0650 0.0967 0.0285 0.0361 0.0443
DualGNN [27] 0.0324 0.0506 0.0799 0.0213 0.0274 0.0350 0.0348 0.0579 0.0892 0.0238 0.0316 0.0402
LATTICE [33] 0.0349 0.0542 0.0845 0.0228 0.0292 0.037 0.0395 0.0625 0.0958 0.0262 0.0337 0.0423

BM3 [35] 0.0326 0.0535 0.0869 0.0219 0.0288 0.0374 0.0401 0.0627 0.0961 0.0269 0.0343 0.0429
MCDRec (BM3) 0.0355 0.0566 0.0890 0.0242 0.0306 0.0386 0.0419 0.0654 0.0991 0.0279 0.0355 0.0443
Improvement 8.90% 5.79% 2.42% 10.50% 6.25% 3.21%. 4.49% 4.31% 3.12% 3.72% 3.50% 3.26%

FREEDOM [34] 0.0376 0.0624 0.0985 0.0243 0.0324 0.0416 0.0455 0.0713 0.1075 0.0299 0.0384 0.0477
MCDRec (FREEDOM) 0.0397 0.0644 0.1013 0.0263 0.0343 0.0438 0.0466 0.0737 0.1100 0.0306 0.0392 0.0488

Improvement 5.59% 3.21% 2.84% 8.23% 5.86% 5.29% 2.42% 3.37% 2.33% 2.34% 2.08% 2.31%

Table 3: Results on ablation study of MCDRec (BM3) on Baby
and Sports. Generally, all components are effective.

Datasets Versions R@5 R@10 R@20 N@5 N@10 N@20

Baby

BM3 0.0326 0.0535 0.0869 0.0219 0.0288 0.0374
BM3+MK 0.0331 0.0541 0.0848 0.0220 0.0289 0.0368
BM3+MRD 0.0348 0.0558 0.0886 0.0230 0.0297 0.0380
BM3+DGD 0.0335 0.0547 0.0875 0.0226 0.0291 0.0375
MCDRec (BM3) 0.0355 0.0566 0.0890 0.0242 0.0306 0.0386

Sports

BM3 0.0401 0.0627 0.0961 0.0269 0.0343 0.0429
BM3+MK 0.0403 0.0620 0.0946 0.0268 0.0340 0.0424
BM3+MRD 0.0411 0.0641 0.0988 0.0275 0.0350 0.0436
BM3+DGD 0.0409 0.0644 0.0983 0.0276 0.0350 0.0435
MCDRec (BM3) 0.0419 0.0654 0.0991 0.0279 0.0355 0.0443

enabling the identification of real noisy interactions and the refine-
ment of existing graph denoising strategies in conjunction with the
diffusion-aware knowledge from MRD.

4.6 Visualization (RQ3)
To investigate how the proposed MRD affect the distribution of
multi-modal item representations, we randomly select five users to
extract their embedding and the multi-modal representation of their
interacted items on Baby at different training stages, including (a)
initial state at epoch 1, (b) early stage at epoch 10, (c) medium-term
at epoch 40 and (d) convergency at epoch 82. It is noteworthy that
these user-item interactions are derived from the evaluation phase
specific to each given epoch, thereby remaining beyond the scope
of training visibility. Then we leverage t-SNE [26] to visualize the
aforementioned representations in Fig. 3.

The observations are as follows: (1) In the initial state (see Fig. 3
(a)), the intrinsic aggregation of the pre-trained representations
from the same modality among diverse users poses a challenge for
the subsequent recommender, hindering its ability to distinguish
user multi-modal preferences effectively. (2) The clustering issues
among heterogeneous modalities have been alleviated in the early
stage (see Fig. 3 (b)), yet the effective differentiation of multi-modal
representations from the same user remains challenging. (3) With
the training of MRD, we progressively achieve consistent modeling

Item embeddingUser embedding
hidden textual representation

(a) Initial state (Epoch 1) (b) Early Stage (Epoch 10)

(c) Medium-term (Epoch 40) (d) Convergency (Epoch 82)
Estimated item representation

hidden visual representation

Figure 3: Visualization of the representation distribution of
MCDRec on different training stages from the perspective of
different users. We employ color differentials to distinguish
different users while utilizing shapes to differentiate the user
embedding 𝒆𝑢 , item embedding 𝒆𝑖 , hidden visual representa-
tion 𝒉𝑣 , hidden textual representation 𝒉𝑡 and the estimated
item representation 𝒆̃𝑖 obtained from MRD.

of multi-modal preferences from the same user. However, the over-
lapping regions in Fig. 3 (c) indicate that our MRD still requires
several iterations to better demonstrate its efficacy. (4) For the con-
vergence of MCDRec in Fig. 3 (d), multi-modal item representations
from the same user exhibit the significant clustering distributions.
So far, the foundational multimodal recommenders are able to thor-
oughly mine users’ modality-aware personalized preferences. This
may be attributed to the effectiveness of our designed conditional
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estimator in precisely handling high-order representation correla-
tions among multi-modal heterogeneous representations, thereby
substantiating the superiority of MRD.

5 CONCLUSION
In this paper, we propose a novel Multimodal Conditioned Dif-
fusion Model for Recommendation (MCDRec), which is able to
co-model multi-modal guidance and diffusion guidance to enhance
the performance of existing multi-modal recommenders. To inject
modality-aware uncertainty into item representations, MCDRec
first proposes the MRD module to reduce the significant deviation
between modality-aware features and the collaborative information
and improve the modeling of item representation. Then MCDRec
presents the DGD which makes full leverage of the diffusion-aware
item representations in MRD to accurately denoise the user-item
interaction graph. The extensive evaluation and analyses on two
real-world datasets verify the effectiveness of MCDRec and demon-
strate that MCDRec can precisely capture users’ modality-aware
personalized preferences. In the future, we will continue to ex-
plore the fine-grained modeling of multi-modal representations in
DM and to validate its effectiveness in more challenging scenarios
such as multimodal sequential recommendation and cross-domain
multimodal recommendation.
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