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相比现有的方法，DreamFont3D 不仅能够生成与文本一致的字体效果，其生成结果还具有更
好的可识别性，支持字体效果的定位。

Figure 1: Comparison between our proposed DreamFont3D and ProlificDreamer [Wang et al. 2023b] in the text-to-3D artistic
font generation under different text prompts. DreamFont3D can better handle the complex text prompts with multiple objects
to generate recognizable fonts, and it performs well when to infer the local position of multiple objects.

ABSTRACT
Text-to-3D artistic font generation aims to assist users for innova-
tive and customized 3D font design by exploring novel concepts and
styles. Despite of the advances in the text-to-3D tasks for general
objects or scenes, the additional challenge of 3D font generation is
to preserve the geometric structures of strokes in an appropriate
extent, which determines the generation quality in terms of the
recognizability and the local effect control of the 3D fonts. This
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paper presents a novel approach for text-to-3D artistic font genera-
tion, named DreamFont3D, which utilizes multi-view font masks
and layout conditions to constrain the 3D font structure and local
font effects. Specifically, to enhance the recognizability of 3D fonts,
we propose the multi-view mask constraint (MC) to optimize the
differentiable 3D representation while preserving the font structure.
We also present a progressive mask weighting (MW) module to
ensure a trade-off between the text-guided stylization of font effects
and the mask-guided preservation of font structure. For precise
control over local font effects, we design the multi-view attention
modulation (AM) that guides the visual concepts to appear in spe-
cific regions according to the provided layout conditions. Compared
with existing text-to-3D methods, DreamFont3D shows its own su-
periority in the consistency between font effects and text prompts,
the recognizability, and the localization of font effects. Code and
data at https://moonlight03.github.io/DreamFont3D/.
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1 INTRODUCTION
Font generation has achieved remarkable success, producing stun-
ning results [Jiang et al. 2017; Wang et al. 2023f, 2020]. However,
prior studies are limited to operations within the raster domain and
applications in flat design, not extendable to 3D environments such
as 3D animations or virtual reality. Recently, text-to-3D technology
achieves much attention [Jain et al. 2022; Mohammad Khalid et al.
2022; Wang et al. 2022], which allows the 3D content generation
under the guidance of natural language. However, comparing to the
generation of 3D objects, the creation of 3D artistic fonts is essen-
tially challenging as it requires not only generating the target font
effect described by the text prompt, but also controlling the overall
font structure and the position of local font effects. For instance,
in the first row of Figure 1, the results need the effects of bamboo
and rope, a recognizable letter ’H’, as well as a rope in the middle
of bamboo. Although existing methods may generate the 3D fonts
with reasonable font effects matching with text prompts [Chen
et al. 2023a; Lin et al. 2023], their performance is limited in the font
recognizability and the localization of font effects. Therefore, the
text-to-3D artistic font generation with precise font structure and
positional control of font effects remains a challenge.

To achieve the generation of text to arbitrary 3D objects, some
researchers propose leveraging 2D priors from pre-trained text-to-
image diffusion models [Ramesh et al. 2022; Rombach et al. 2022;
Saharia et al. 2022] to guide 3D generation, as demonstrated by a
representative work DreamFusion [Poole et al. 2023]. Most existing
text-to-3D research follows a unified 2D prior optimization para-
digm: they utilize the text-to-image diffusion models as supervision
for various views of 3D content and optimize the 3D representation
(such as Neural Radiance Fields [Mildenhall et al. 2020]) through
score distillation sampling [Poole et al. 2023]. Follow-up works, ex-
emplified by Magic3D [Lin et al. 2023] and ProlificDreamer [Wang
et al. 2023b], involve the implementation of multi-stage optimiza-
tion strategies, optimizing the diffusion prior with the 3D repre-
sentation simultaneously and the proposal of more effective score
distillation algorithms to improve the resolution and details of the
generated results. However, since the strength of text-to-image
diffusion models is to understand text and image content, they are
not adept at accurately converting arbitrary font structure into
image space and synthesizing spatially controllable font effects.
Therefore, the previous text-to-3D methods [Jain et al. 2022; Wang
et al. 2022, 2023a] following the above 2D prior optimization often
cause unrecognizable font and unstable local effects.

In this paper, we propose DreamFont3D, a novel text-to-3D artis-
tic font approach designed to improve font recognizability and

localization of font effects. The essence of our model is the employ-
ment of font masks and layout as input control conditions, which
guide the 3D shape and local font effects frommultiple perspectives.
Specifically, DreamFont3D leverages a pre-trained diffusion model
as a 2D prior to refine the parameters of a NeRF-based 3D volume,
facilitating the generation of text-specified font effects. To preserve
the target font structure, we propose multi-view mask constraint to
prevent over-deformation of the 3D fonts. This is facilitated by the
utilization of multi-view font masks that are readily accessible and
offer structure information into the 3D fonts in different viewpoints.
We additionally present a progressive mask weighting module to
achieve a trade-off between text-guided stylization of font effects
and mask-guided preservation of font structure. To achieve localiza-
tion of font effects, we introduce layout conditions, e.g., freehand
font image with several colors, and propose multi-view attention
modulation. Since the layout of the generated image is related to
the attention maps [Hertz et al. 2023; Kim et al. 2023], we dynam-
ically modulate the multi-view attention maps in the pre-trained
diffusion model according to the layout conditions to guide objects
to appear in specific regions. Due to the text-to-3D artistic font gen-
eration is a new task, we collect a new evaluation dataset to validate
our method. Extensive experiments have proven the superiority of
DreamFont3D in text-to-3D artistic font generation task.

Our contributions are as follows:
• To the best of our knowledge, this paper presents a novel
approach designed for the text-to-3D artistic font generation.
This approach not only ensures text-consistent font effects
and higher font recognizability but also provides positional
control over the font effects.

• We propose the multi-view mask constraint to improve the
recognizability of generated 3D artistic font, and a progres-
sive mask weighting module to achieve a trade-off between
text-guided stylization and font structure.

• We propose the multi-view attention modulation, which
combine attention modulation with text-to-3D techniques to
achieve the localization of font effects. It is the first attempt to
control spatial position when generating creative 3D content.

2 RELATEDWORK
2.1 Artistic Font Image Generation
Artistic font image generation [Gao et al. 2019; Li et al. 2022b, 2023;
Wang et al. 2023d] can be defined as transferring the style of refer-
ence images to another artistic font image or a binary font source
image [Yang et al. 2019a]. The overall style of the generated re-
sult, e.g., texture, conceptual style, etc., remains consistent with
the reference images, while the font structure remains consistent
with the original image. The previous works have adopted methods
based on patch-based texture synthesis [Yang et al. 2022, 2019b] or
Generative Adversarial Networks [Li et al. 2020; Yang et al. 2019a]
to ensure that the generated style aligns with the correct style dis-
tribution. Recently, Anything2Glyph [Wang et al. 2023e] leverages
the advantage of Stable Diffusion in generating images of any ob-
ject, and uses masks to constrain the approximate skeleton-level
positioning of objects within images. However, these methods have
been confined to the 2D space, making their results inapplicable to
3D scenes. In contrast, our proposed model is capable of generating
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realistic 3D artistic fonts. It allows for the creation of artistic fonts
with any font effect through text prompts, opening new frontiers
in 3D artistic font design.

2.2 Diffusion Methods with Spatial Control
Due to the advantages of diffusion models [Ma et al. 2024; Song
et al. 2020] over GANs [Dong et al. 2022; Karras et al. 2021] in terms
of generating higher image quality and better training stability,
text-to-image diffusion models [Chefer et al. 2023; Gal et al. 2023;
Tewel et al. 2023] have achieved tremendous success in the synthe-
sis of diverse, photorealistic images. However, since text-to-image
models are typically trained on datasets with short text captions,
they often struggle to capture all the details in dense text prompts
composed of several phrases, especially when there are complex
relative positional relationships [Kim et al. 2023]. A series of recent
works [Epstein et al. 2023; He et al. 2023b; Rombach et al. 2022;
Voynov et al. 2023] have addressed this issue by introducing spa-
tial layout conditions and attention mechanism [Guo et al. 2020;
Wang et al. 2023c]. For example, Composable Diffusion [Liu et al.
2022] and MultiDiffusion [Bar-Tal et al. 2023] execute a separate
denoising process for each phrase at every timestep. DenseDif-
fusion [Kim et al. 2023] introduces the attention modulation and
semantic segmentation map as layout conditions to guide objects
to appear in specific areas without the need for additional training.
Despite significant advancements in spatial position control within
text-to-image generation, the spatial position control research in
text-to-3D generation remains notably underexplored.

2.3 Text-to-3D Generation
Due to the early 3D generation works [Chang et al. 2015; Schwarz
et al. 2020; Sun et al. 2022] rely on large-scale 3D data, researchers
have begun to explore the potential of leveraging powerful text-to-
image diffusion models for 3D content creation. A pioneering work,
DreamFusion [Poole et al. 2023], utilize the text-to-image diffusion
model acts as a critic, ensuring that the differentiable 3D represen-
tation match the distribution of real images when rendered from
any viewpoints. However, DreamFusion often produces unrealistic
and rough results. Following this, a series of works [Metzer et al.
2023; Raj et al. 2023; Xu et al. 2023b] have significantly advanced
in producing more photorealistic and text-consistency 3D content.
Recently, Control3D [Chen et al. 2023b] incorporates ControlNet
[Zhang et al. 2023] and leverages its sketch-to-image capabilities
to promote geometric controllability. MVDream [Shi et al. 2023]
utilizes a multi-view diffusion model as 2D prior to achieve more
consistent 3D generation across multi-views. However, these meth-
ods exhibit deficiencies in maintaining the structural integrity of
3D font structures and in exerting precise control over local effects.
This results in inaccuracies in font structures and instability in the
positioning of font effects.

3 METHOD
3.1 Overview
As shown in Figure 2, given a freehand font image and a descriptive
text prompt as the conditions, our goal is to automatically produce
the 3D font satisfying both the target font structure and the specified

font effect by utilizing the prior knowledge of the pre-trained text-
to-image diffusion models. Specifically, to obtain the 3D font effect
consistent with the text prompt, we employ NeRF (Neural Radiance
Fields [Mildenhall et al. 2020]) as the 3D representation, and adopt
the score distillation sampling technique to optimize the parameters
of 3D representation based on the frozen text-to-imagemodel. Then,
to preserve the font structure during the optimization, we propose
the multi-view mask constraint to prevent the over-deformation
of the 3D shape. At the same time, we utilize a progressive mask
weighting module to achieve a trade-off between the text-guided
stylization of the font effect and themask-guided preservation of the
font structure. Finally, to enhance the control ability for creative
design, we propose the multi-view attention modulation which
allows to specify different local font effects for different regions of
the font by manipulating the intermediate attention maps.

3.2 Score Distillation Sampling
To generate font effects consistent with text prompts, we introduce
the score distillation sampling (SDS [Poole et al. 2023]) technique.
It iteratively optimize the parameters 𝜃 of a differentiable 3D repre-
sentation utilizing a text-to-image diffusion model 𝜙 as the 2D prior.
At each iteration, it selects a random camera pose and uses the vol-
umetric renderer 𝑔 to generate the image 𝑥 = 𝑔(𝜃 ). 𝑥 is injected
with random Gaussian noise 𝜖 and then fed into the text-to-image
model, which is used to predict the noise to generate the image
corresponding to the text prompt. Subtracting the injected noise 𝜖
from the predicted noise 𝜖𝜙 (𝑧𝑡 | 𝑦, 𝑡) produces the gradient that is
used to update the parameters 𝜃 of NeRF. Therefore, the gradient
of the SDS loss with respect to 3D representation 𝜃 is:

∇𝜃L𝑆𝐷𝑆 (𝜙, 𝑥) = E𝑡,𝜖 [𝑤 (𝑡) (𝜖𝜙 (𝑧𝑡 | 𝑦, 𝑡) − 𝜖) 𝜕𝑥
𝜕𝜃

], (1)

𝑧𝑡 refers to the input of the diffusion model. 𝑤 (𝑡) is a weighting
function depending on the timestep 𝑡 . By doing so, the SDS loss
enables the rendered images to align with the text prompts, thereby
ensuring that the font effects can match the textual descriptions.

3.3 Multi-View Mask Constraint
Due to the diversity of font structures, existing text-to-image diffu-
sion models struggle to predict the structure of arbitrary characters
based on textual descriptions [Wang et al. 2023e]. Even with addi-
tional text prompts to describe perspective information, as Dream-
Fusion [Poole et al. 2023] did, generating recognizable 3D artistic
fonts still remains a challenge.

Our key idea is to compute multi-view binary masks as con-
straints to preserve the font structure. First, compared to the de-
tailed text prompts or multi-view RGB images, the binary font
masks are easily accessible and can describe the font structure pre-
cisely. Second, it is easy to apply perspective transformation on
the mask image to obtain multi-view constraints for 3D generation,
without the need to formulate the constraints in 3D format.

To implement the multi-viewmask constraint, we first uniformly
sample a series of azimuth 𝑃 , and perform perspective transforma-
tion on the font mask to obtain multi-view font masks 𝑀𝑓 . Then
we add two rectangular-shaped masks for the cases azimuth 90◦
and 270◦, where the length is determined by the projection of the
input font mask in the vertical direction, and width customized.
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Figure 2: Overview of the DreamFont3D. We use a frozen text-to-image diffusion model to optimize font effects of 3D font with
L𝑆𝐷𝑆 . The input freehand font is used to create multi-view layouts 𝐿 = {𝑙𝑝𝑖 }𝑋𝑖=1 by perspective transformation, and each 𝑙𝑝𝑖 is
segmented into multi-view layout regions 𝑅𝑖 = {𝑙𝑝𝑖 , 𝑗 }𝑌−1

𝑗=0 . The transformation rules follow a set of uniformly sampled azimuth
𝑃 = {𝑝𝑖 }𝑋𝑖=1, 𝑝𝑖 ≠ 90◦ ∧ 𝑝𝑖 ≠ 270◦. The text phrases 𝐶 = {𝑐 𝑗 }𝑌−1

𝑗=0 and 𝑅𝑖 align according to the annotations, and are packaged as
(𝐶, 𝑅𝑖 ) input into the cross attention layer for multi-view attention modulation to control the local font effects (𝑘 is the index
of layer). In another branch, the input freehand font is binarized into a font mask. Then, we obtain multi-view font mask
𝑀𝑓 = {𝑚𝑓𝑖 }𝑋+2

𝑖=1 through perspective transformation, 𝑃 ′ = 𝑃 ∪ {90◦, 270◦}. The 𝑀𝑓 is used together with rendered mask 𝑀𝑟 to
calculate L𝑚𝑎𝑠𝑘 to constraint the font structure.

The purpose of the above operation is to better approximate the
thickness of a z-dimensional 3D font.

Next, we need to obtain the mask rendered by NeRF to calculate
the mask loss and constrain the geometric structure of the 3D font.
Specifically, we first define a set of rays for rendering the mask, and
the directions of these rays are calculated based on the azimuth 𝑃 ′.
The volume density accumulation along a ray 𝑟 for mask rendering
can be formulated as follows:

𝑚𝑟 = 1 − exp
(
−
∫ 𝑡𝑓

𝑡𝑛

𝜎 (𝑟 (𝑡)) 𝑑𝑡
)
, (2)

where 𝑚𝑟 represents the mask value along the ray 𝑟 . 𝜎 (𝑟 (𝑡)) is
the volume density at position 𝑟 (𝑡) on the ray path. 𝑡𝑛 and 𝑡𝑓
are the starting and ending range of the integration respectively,
corresponding to the positions where the light enters and leaves
the scene. The process of rendering a mask can be explained as
calculating the cumulative volume density along the path of the
ray and converting it into a mask value that reflects the probability
of encountering an opaque object along that path. As a result, we
obtain the rendered masks𝑀𝑟 , and the loss function that uses multi-
view font masks to constrain the structure of 3D font is defined
as:

L𝑚𝑎𝑠𝑘 =


𝑀𝑓 −𝑀𝑟



2
2 . (3)

3.4 Trade-off of Font Structure and Stylization
The appearance of artistic fonts is determined by a combination of
the font structure and font effects, e.g., texture, conceptual style,
etc. During our optimization of the NeRF representation, the multi-
view mask constraint encourages the 3D font to strictly align with
the font structure of masks, while eliminating the necessary de-
formation to obtain the reasonable font effect described by the
text prompt. On the other hand, the SDS loss focuses on the font
effect, but is not aware of the font structure and often cause the
loss of the font structure. Additionally, the persistent imposition of
mask constraints can cause the loss of detailed font effects and the
emergence of the foggy phenomenon.

We propose the progressive mask weighting to achieve a flexible
trade-off between the text-guided stylization of font effect and the
mask-guided preservation of the font structure. Specifically, we se-
lect the NeRF’s checkpoint at ℎ-th iteration, and render the masks
of 3D representation. The rendered masks𝑀𝑟,ℎ is slightly deformed
from the original multi-view font masks, but remains the key fea-
tures of the font structure. We perform sharpening (Laplacian filter)
and anti-aliasing (Gaussian blur) on 𝑀𝑟,ℎ to improve clarity and
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edge smoothness. Then, the𝑀𝑟,ℎ and𝑀𝑓 are used together to fur-
ther optimize the font structure:

L𝑚𝑎𝑠𝑘 = 𝛼


𝑀𝑟,ℎ −𝑀𝑟



2
2 + (1 − 𝛼)



𝑀𝑓 −𝑀𝑟



2
2. (4)

where 𝛼 is a linearly increasing weight parameter as the iteration
progresses (0 < 𝛼 <= 1). In summary, the progressive mask weight-
ing is a technique that enhances model’s compatibility between
text-guided stylization of font effect and mask-guided preservation
of font structure by weighting the multi-view font masks and the
rendered masks.

3.5 Localization of Font Effects
The localization of font effects refers to specifying unique font ef-
fects for different local spatial regions. However, it is difficult for the
text-to-image models to infer the layouts and generate the correct
composition of the multiple objects, not to mention the multi-view
consistency problem in the text-to-3D setting. As a consequence, the
existing text-to-3D methods often predict inconsistent positional
relationships or redundant font effects.

DenseDiffusion [Kim et al. 2023] achieves layout control based
on attention modulation in text-to-image generation, and states
a significant correlation between the generated image layout and
attention maps. The attention modulation can dynamically adjust
the attentionmaps using layout and text phrases as input, ultimately
influencing the predicted noise. In this paper, we propose the multi-
view attention modulation to guide the prediction of noise and
control the layout of 3D font. Unlike [Kim et al. 2023], we use
the diffusion model to separately predict layout-related noise at
multiple views; SDS iteratively updates the 3D representation using
the gradient information computed from the noise.

Layout condition alignment. First, we use different regions of the
freehand font to represent different font effects. Then, we perform a
perspective transformation on the freehand font to obtain the multi-
view font layout 𝐿, where each element 𝑙𝑝𝑖 needs to undergo region
segmentation to obtain layout regions 𝑅𝑖 = {𝑙𝑝𝑖 , 𝑗 }𝑌−1

𝑗=0 , 𝑖 and 𝑗 are
used to specify views and regions, respectively.We align each layout
region 𝑙𝑝𝑖 , 𝑗 with the text phrase 𝑐 𝑗 according to annotations and
pack them as (𝐶, 𝑅𝑖 ). Then, we input (𝐶, 𝑅𝑖 ) into the cross attention
layer. Note that we leave 𝑐0 as an empty string, corresponding to
the white region of 𝑙𝑝𝑖 ,0 to represent the background region.

Multi-view attention modulation. The paired (𝐶, 𝑅𝑖 ) are the input
conditions of attention modulation by providing spatial layout of
font effects. Specifically, we dynamically adjust the attention maps
based on each paired (𝐶, 𝑅𝑖 ) to obtain a higher value, so that the
object described by 𝑐 𝑗 can be generated in the corresponding region
𝑙𝑝𝑖 , 𝑗 . The key is to calculate the value of𝐴, which is used to indicate
the degree of modulation, and its calculation takes into account the
range of the original value and the area size of the region:

𝐴 = 𝑅𝑖 ⊙ 𝐴𝑚𝑎𝑥 ⊙ 𝑆 − (1 − 𝑅𝑖 ) ⊙ 𝐴𝑚𝑖𝑛 ⊙ 𝑆, (5)

where 𝑅𝑖 indicates whether to increase or decrease the attention
score for a particular region. The matrix 𝑆 represents the segment
area size, which is used to automatically adjust the modulation
degree based on the area size of each region. In order to maintain
the original generative ability of the pre-trained model, we also

introduce the matrix 𝐴𝑚𝑎𝑥 , 𝐴𝑚𝑖𝑛 ∈ R |𝑞𝑢𝑒𝑟𝑖𝑒𝑠 |× |𝑘𝑒𝑦𝑠 | , which iden-
tify each query’s maximum and minimum values, ensuring the
modulated values stay close to the original range:

𝐴𝑚𝑎𝑥 = max(𝑄𝐾⊤) −𝑄𝐾⊤, (6)

𝐴𝑚𝑖𝑛 = 𝑄𝐾⊤ −min(𝑄𝐾⊤). (7)
Ultimately, we modulate the attention maps as below,

𝑧
(𝑘+1)
𝑡 = 𝐴(𝑘 )𝑉 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝐾⊤ +𝐴

√
𝑑

)
𝑉 , (8)

where 𝑄 = {𝑧 (𝑘 )𝑡 }, 𝐾 = 𝑉 = {𝜙 (𝐶), 𝑧 (𝑘 )𝑡 }, 𝑘 represents the 𝑘-th
attention layer and 𝜙 (𝐶) represents the encoded word embeddings.
The text phrase 𝐶 and text prompt 𝑦 use the same text encoder.

3.6 Overall Optimization
Ourmethod requires the alternating execution of three optimization
strategies: the SDS at random azimuth 𝑅 to optimize font effects, the
multi-viewmask constraint at azimuth 𝑃 ′ to optimize font structure,
and the layout-guided SDS at azimuth 𝑃 to control local text effects.
In summary, the overall objective function can be formulated as:

𝜃∗ = 𝑎𝑟𝑔min
𝜃

L(𝜙, 𝑥 = 𝑔(𝜃 ), 𝐿, 𝑀𝑓 ), (9)

where L represents the two loss functions of the optimization
process. Since the optimization process is performed alternately,
L𝑆𝐷𝑆 and L𝑚𝑎𝑠𝑘 are used alternately to update NeRF parameters
during training.

4 EXPERIMENTS
Figure 3 shows the 3D artistic fonts generated by our method both
with and without the use of layout conditions. Next, we will intro-
duce the implementation details and experimental results.

4.1 Implementation Details
Data collection. We collect a new evaluation dataset comprising

freehand font images, font masks, and text prompts. As shown
in Figure 5, we craft 50 freehand font images, featuring English,
Chinese, numerals, and special symbols, each has 3-4 distinct color
regions and text phrase annotations. GPT-4 [OpenAI 2023] provides
support for writing text prompts. Font masks can be obtained from
the grayscale of freehand fonts and batch generation. We obtain
260 font masks through batch generation using font library files.
Font library files can be downloaded from Foundertype website.

Parameter setting. Our method employs 64×64 rgb views as su-
pervision conditions for the 2D prior, 64×64 font mask and freehand
font image. The azimuth 𝑃 ′ = {(𝑖 − 1) × 45◦}8

𝑖=1. We render the
result views at 800×800 resolution for display. For score distillation
sampling, we leverage random sampling of the camera radius and
field-of-view angles, aligning with stable-dreamfusion [Tang 2022].
The implementation of our baseline also use stable-dreamfusion
[Tang 2022]. The weight coefficient of theL𝑆𝐷𝑆 andL𝑚𝑎𝑠𝑘 , 𝜆𝑠𝑑𝑠=1
and 𝜆𝑚𝑎𝑠𝑘=500. All experiments are conducted on a single NVIDIA
3090 GPU. We train our model for 10,000 iterations and the whole
optimization process takes up about 30 minutes, 18G GPU mem-
ory for each 3D artistic font. In order to preserve the details of
text-guided font effects, SDS is applied throughout the entire op-
timization process. Multi-view mask constraint is executed from
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实验结果

Text input : a letter ‘S’ with Christmas style. Text input : a word ‘火’ with fire style.

Text input : two apples and a banana inside a rope, 
they look like a smiling face.

Text input : a baseball bat is between two 
baseballs, they look like a symbol '%'.

0° 45° 90° 135° 0° 45° 90° 135°

生成的3D艺术字体的结果。
我们提出的DreamFont3D可以基于字体蒙版生成中文、英文和特殊符号的3D形
式，并支持字体效果的定位。

Font Mask Font Mask

Freehand
Font Image

Freehand
Font Image

Figure 3: The Results of the Text-to-3D Artistic Font Generation with and without Layout Conditions. The DreamFont3D can
generate 3D forms of English, Chinese, special symbols and emoticons. Our results faithfully adhere to both textual descriptions
and required font structure.

对比实验

视觉上的结果对比。
我们使用相同的文本提示来比较现有的text-to-3d模型，并且还显示了前视图、侧视图(方位角= 315度)和法
线的结果。这些结果表明，DreamFont3D在可识别性和字体效果的定位方面取得了较好的性能。

DreamFusion Magic3D ProlificDreamer OursFantasia3D

Text input : a number ‘9’ with wood style.

Text input : a letter ‘Q’ with rope style, a banana is under the rope.

MVDream SD2.1+Wonder3D

Figure 4: Qualitative Performance Comparison. We use the same text prompts to compare existing text-to-3D models and
a text-to-image and image-to-3D baseline, and show the results in front view, side view (azimuth = -45◦) and normal. These
results indicate that DreamFont3D has achieved better performance in terms of the consistency between font effects and text
prompts, font recognizability, and localization of font effects.

(b) Batch-generated font masks(a) Freehand font images

Figure 5: Examples of the Freehand Font Images and Font
Masks.

0 to 9,000 iterations, and performing progressive mask weighting
at ℎ=4,000. Multi-view attention modulation is executed from 0 to
7,000 iterations.

4.2 Evaluation Metrics
We use CLIP [Radford et al. 2021], quality assessment and align-
ment assessment for quantitatively comparison, where the last two
metrics come from T3 Bench [He et al. 2023a]. CLIP loss quantifies
the correlation between a single view of the generated 3D artistic
font and the input text, leveraging the CLIP encoder. The quality
assessment combines multi-view text-image scores (ImageReward

Table 1: Quantitative Comparisons. We use CLIP, quality as-
sessment, and alignment assessment to evaluate quantitative
performance.

Methods CLIP ↑ Quality ↑ Alignment↑

DreamFusion 0.3903 18.25 2.45
Magic3D 0.4319 25.69 2.60
Fantasia3D 0.4321 19.55 1.70
MVDream 0.4071 28.81 2.95

ProlificDreamer 0.4324 31.04 2.80
SD2.1+Wonder3D 0.5794 40.05 2.70

Ours 0.7714 47.71 4.10

[Xu et al. 2023a]) and regional convolution to detect consistency
of text prompts and multi-views. The alignment assessment uses
multi-view captioning (BLIP [Li et al. 2022a]) and Large Language
Model (GPT4 [OpenAI 2023]) to measure whether the text in the
captioning is consistent with the text input (from 1-5 score).
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Table 2: User Study. A total of 30 volunteers evaluated the
10 groups of results of 7 methods across 3 metrics. The best
results are shown in bold.

Method Font Effect ↑ Recognizability↑ Localization↑

DreamFusion 3.45 2.38 2.52
Magic3D 3.72 2.57 2.66
Fantasia3D 2.91 1.76 1.89
MVDream 3.37 2.32 2.28

ProlificDreamer 3.65 2.19 2.62
SD2.1+Wonder3D 4.07 2.64 2.92

Ours 4.56 4.57 4.60

4.3 Performance Comparison
We compare five text-to-3D methods, using the threestudio library
[Yuanchen et al. 2023] for code implementation. DreamFusion
[Poole et al. 2023], Magic3D [Lin et al. 2023], and our model use
DeepFloyd [DeepFloyd 2022] as diffusion model. However, the first
two are inconsistent with the original papers as they use private
diffusion models. ProlificDreamer[Wang et al. 2023b], MVDream
[Shi et al. 2023], Fantasia3D [Chen et al. 2023a] use SD2.1 [Rombach
et al. 2022] as the diffusion model, which is consistent with the
original papers. All text-to-3D methods, except Fantasia3D (uses
DMTET [Shen et al. 2021]), adopt Instant-NGP [Müller et al. 2022]
as NeRF backbone. In addition, we construct a two-stage baseline
by combining the SD2.1 and an image-to-3D model (Wonder3D
[Long et al. 2024]) for comparison.

Quantitative comparison. Table 1 reports the average values of
twenty sets of generated results. Since existing methods fail to
generate views of precise font structure and infer the suitable lay-
out based on the textual description, the CLIP, quality assessment
scores, and alignment assessment scores for these methods are rel-
atively low. In contrast, DreamFont3D focuses on font structure
optimization and the control of local font effects, thus outperform-
ing existing methods in the three mentioned metrics.

Qualitative comparison. Figure 4 illustrates that the current text-
to-3D model is capable of producing some font effects that align
with the text prompts, including wood textures and yellow cylin-
ders resembling bananas. However, they generate unrecognizable
3D font and cannot satisfy the positional relationships specified
in text prompts. In contrast to existing methods, DreamFont3D
generates results that not only exhibit accurate font effects and
better recognizability, but also successfully achieve the localization
of font effects, as exemplified by phrases like ’a banana is under
the rope’.

User study. Although the mentioned quantitative metrics can
evaluate the consistency between generated views of 3D represen-
tation and text prompts, the text-to-3D artistic font generation is an
open-ended task. To more comprehensively evaluate the font effect,
recognizability, and localization of font effects, we conducted a user
study. A total of 30 volunteers participated in this evaluation, which
involve 15 graduate students in related fields and 15 undergradu-
ate students without related research foundation. Specifically, we
anonymously show the 10 groups of text prompts and four views of

generated results from DreamFont3D and other methods. Users are
asked to rate the displayed views. The scoring scale will be based on
confidence (1-5 scores) for the following three questions. (1) Font
effect: How confident are you that the results have the font effects
described in the text prompts? (2) Recognizability: How confident
are you that the results is a recognizable character? (3) Localization:
How confident are you that the positional relationship of the font
effects is consistent with the text prompts?

The user feedbacks are summarized in Table 2, where a signifi-
cant gap exists between ours and the others. Although the other
text-to-3D models can generate corresponding font effects based
on text input, however, they obtain lower scores in terms of font
recognizability and localization of font effects. In contrast, the gen-
erated results of our method are appreciated in terms of all three
metrics.

4.4 Ablation Study
In this subsection, we verified the effectiveness of the proposed
modules, respectively.

Multi-view mask constraint (MC). As shown in Figure 6, the base-
line’s generated results exhibit a distinct cluster of bananas. This is
because the optimization objective of the original SDS was to make
the 3D representation appear as the letter ’A’ from any angle, which
led to the generation of unrecognizable 3D fonts. After applying
MC, the recognizability of 3D fonts has been improved.

We also verified the impact of the number of masks. In Figure 7,
while the views become denser, the stylization effect decreases, e.g.,
some bamboo leaves and branches disappear, and the font structure
becomes neater and more regular. These results indicate that the
multi-view mask constraint play a key role in the optimization
of font structure, and more masks increase the strength of con-
straint on font structure. To balance stylization, font structure, and
optimization efficiency, +8×MC is an empirical choice.

Progressive mask weighting (MW). The text-guided stylization
of the font effect inevitably leads to over-deformation of fonts due
to the natural geometric properties of certain objects, such as the
curvature of bananas as seen +MC in Figure 6. Although the MC
enhances the font recognizability, its similarity to the provided
font mask decreases. To preserve the font structure within the
mask, we apply MW to achieve a trade-off between the text-guided
stylization of the font effect and the mask-guided preservation of
the font structure, see +MC&MW in Figure 6.

Multi-view attention modulation (AM). As shown in Figure 6(b),
controlling the local effects of 3D artistic fonts solely based on
positional descriptions in the text prompts is challenging and often
leads to incorrect spatial relationships and redundant attributes. We
apply two different freehand font as layout conditions and AM to
achieve the precise localization of font effects. These results prove
that AM can effectively control the local font effects according to
layout conditions.

5 CONCLUSIONS AND LIMITATIONS
We introduce a novel approach to constrain the geometry and
control the local effects of 3D content using multi-view masks and
layouts. This technique is employed in the creation of 3D artistic
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消融实验

MO：文本指定的字体效果，如香蕉，自身具有弯曲的天然特质，因此会影响3D字体的形状。所以提出MO

a letter “A” with banana style, a red flower on the top of bananas.

+MC

(a) Unified font effect generation

a letter “A” with banana style.

Baseline +MC +MC&MW Baseline +MC&MW

(b) Locally controlled font effects generation

+MC&MW&AM

Figure 6: Ablation Study. (a) Unified font effect generation. We validate the effectiveness of multi-view mask constraints (MC)
and progressive mask weighting (MW) without using layout conditions. (b) Locally controlled font effects generation. We also
validate the effectiveness of the above two modules and multi-view attention modulation (AM) when using layout conditions.消融实验

a letter “N” 
with bamboo 

style.

 Baseline

+ 1×MC

Text input

+ 4×MC

+ 8×MC

Font Mask

+ 12×MC

Figure 7: The Impact of the Number of Masks on Font Struc-
ture. +1×MC means that only the front view mask is used.
+4×MC, +8×MC, and +12×MC respectively performmask con-
straints every 90◦, 45◦, and 30◦.

fonts, providing a convenient tool for both novice and professional
designers to craft personalized 3D artistic fonts. The effectiveness
and superiority of our proposed method are demonstrated through
comparative experiments and a user study.

Limitations and future work. Our method also has certain lim-
itations, see Figure 12. Due to the stereotypical representations
of object geometry by pre-trained diffusion models, e.g., bamboo
being straight and bananas being curved, preserving the structural
integrity of complex font structure is a challenge. This can be alle-
viated by choosing suitable font effects such as ’rope.’ Secondly, our
approach primarily emphasizes the font structure and localization
of font effects in 3D artistic fonts, rather than achieving higher
resolution and photorealistic details. Future enhancements could
incorporate multi-stage optimization and high-resolution latent
diffusion models to enhance both the quality and level of detail.
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补充材料

Text Input:  “ a letter (*) with rope style. ” 

Text Input:  “ a letter (*) with gold style. ” 

0° 45° 90° 135° 0° 45° 90° 135°Font Mask Font Mask

Figure 8: Results with Different Font Structure. We show the generated results with different font structure and letters. These
examples we present use the same text prompt paradigm, only the font masks are different. ’(*)’ indicates a specified letter.

补充材料

Font Mask

MC-A MC+MW
(h=4,000)

+MW
(h=5,000)

+MW
(h=6,000)

+MW
(h=7,000)

+MW
(h=8,000)

Threshold Masks

+MW
(h=3,000)

+MW
(h=2,000)

Figure 9: Influence of Progressive Mask Weighting (MW) on the Results. MC: Stopping multi-view mask constraint midway, the
implementation details of MC are mentioned in Section 4.1. MC-A: Always using multi-view mask constraint without MW. We
also show the generated results using different threshold masks from 2,000 to 8,000 iterations. We found that when ℎ=4,000
iterations, the font structure and font effect details are closest to a balanced state.
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a number ‘5’ with Van Gogh style. a number ‘5’ with wash painting style.

a letter ‘A’ with banana style, a red apple in the 
middle of two bananas.

a letter ‘A’ with banana style, a red flower in the 
middle of two bananas.

a letter ‘H’ with tree branch style, a bird in the 
middle of tree branch.

a letter ‘A’ with tree branch style, a bird in the 
middle of tree branch.

a letter ‘O’ with wreath style, a sapphire is inside the 
wreath. a number ‘4’ with glod style, a ring on the top.

a number ‘21’, ‘2’ with wood style, ‘1’ with banana style. a number ‘07’, ‘0’ with wood style, ‘7’ with banana style.

a letter ‘K’ with strawberry style.

a letter ‘A’ with feather style. a letter ‘A’ with water style.

a letter ‘K’ with apple style.

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 

(d) 

Figure 10: Text-to-3D Artistic Font Generation with Different Font Effect Style. We present three lines of generated results, each
with the same character but different font effects. (a) Composed font effects. (b) Arranged font effects. (c) Abstract font effects.

a number ‘5’ with Van Gogh style. a number ‘5’ with wash painting style.

a letter ‘A’ with banana style, a red apple in the 
middle of two bananas.

a letter ‘A’ with banana style, a red flower in the 
middle of two bananas.

a letter ‘H’ with tree branch style, a bird in the 
middle of tree branch.

a letter ‘A’ with tree branch style, a bird in the 
middle of tree branch.

a number ‘21’, ‘2’ with wood style, ‘1’ with banana style. a number ‘07’, ‘0’ with wood style, ‘7’ with banana style.

a letter ‘K’ with strawberry style.

a letter ‘A’ with feather style. a letter ‘A’ with water style.

a letter ‘K’ with apple style.

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 

Figure 11: Text-to-3D Artistic Font Generation with Localization of Font Effects. (a) Localized font effects alteration through
text prompts. (b) Localized font effects control for different characters. (c) Character-specific font effects control.

a number ‘5’ with Van Gogh style. a number ‘5’ with wash painting style.

a letter ‘A’ with banana style, a red apple in the 
middle of two bananas.

a letter ‘A’ with banana style, a red flower in the 
middle of two bananas.

a letter ‘H’ with tree branch style, a bird in the 
middle of tree branch.

a letter ‘A’ with tree branch style, a bird in the 
middle of tree branch.

a number ‘21’, ‘2’ with wood style, ‘1’ with banana style. a number ‘07’, ‘0’ with wood style, ‘7’ with banana style.

a letter ‘K’ with strawberry style.

a letter ‘A’ with feather style. a letter ‘A’ with water style.

a letter ‘K’ with apple style.

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 

a number ‘R’ 
with 

bamboo style.

a word ‘子’ 
with

 rope style.

a word ‘子’ 
with

 bamboo style.

a number ‘R’ 
with 

rope style.
(a) (b) 

Figure 12: Limitations of font structure generation. (a) The phenomenon of bamboo’s inherent inflexibility. (b) The phenomenon
of lost strokes in Chinese font. Using materials such as bamboo to achieve significant deformations that approximate the font
structure presents a challenge to our model. This issue can be mitigated by selecting suitable materials, such as rope.
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