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Abstract—The clustering performance of Fuzzy Adaptive Res-
onance Theory (Fuzzy ART) is highly dependent on the preset
vigilance parameter, where deviations in its value can lead to
significant fluctuations in clustering results, severely limiting its
practicality for non-expert users. Existing approaches generally
enhance vigilance parameter robustness through adaptive mech-
anisms such as particle swarm optimization and fuzzy logic rules.
However, they often introduce additional hyperparameters or
complex frameworks that contradict the original simplicity of
the algorithm. To address this, we propose Iterative Refinement
Fuzzy Adaptive Resonance Theory (IR-ART), which integrates
three key phases into a unified iterative framework: (1) Cluster
Stability Detection: A dynamic stability detection module that
identifies unstable clusters by analyzing the change of sample
size (number of samples in the cluster) in iteration. (2) Un-
stable Cluster Deletion: An evolutionary pruning module that
eliminates low-quality clusters. (3) Vigilance Region Expansion:
A vigilance region expansion mechanism that adaptively adjusts
similarity thresholds. Independent of the specific execution of
clustering, these three phases sequentially focus on analyzing
the implicit knowledge within the iterative process, adjusting
weights and vigilance parameters, thereby laying a foundation
for the next iteration. Experimental evaluation demonstrates that
IR-ART improves tolerance to suboptimal vigilance parameter
values while preserving the parameter simplicity of Fuzzy ART.
Case studies visually confirm the algorithm’s self-optimization
capability through iterative refinement, making it particularly
suitable for non-expert users in resource-constrained scenarios.

Index Terms—Fuzzy Adaptive Resonance Theory, Clustering,
Vigilance Parameter, Iterative Refinement.

I. INTRODUCTION

The performance of Fuzzy Adaptive Resonance Theory (Fuzzy
ART) [1] largely depends on the vigilance parameter ρ, which
is predetermined and remains constant throughout the process.
A larger ρ results in a wider vigilance region (VR), imposing
stricter similarity requirements on samples, and is more likely
to generate numerous fine clusters. In contrast, a smaller ρ
leads to a narrower VR, allowing data points to be included
in the same cluster under more relaxed criteria. However, the
traditional approach employs a uniform ρ globally and keeps it
unchanged, making the algorithm highly sensitive to variations
in ρ. This dependency significantly increases the requirement
for user expertise, complicating the attainment of ideal clus-
tering results. Therefore, the ability to adaptively adjust ρ
is crucial for balancing the trade-off between overfitting and
underfitting.

Recent adaptive improvements to address the sensitivity
issue of the vigilance parameter in the ART model include

notable contributions such as combining overlapped cate-
gories and enhancing classification accuracy [2]. Methods for
variable vigilance parameters and vigilance adaptation were
introduced, refining the model’s dynamic responsiveness [3]
[4]. Techniques for adaptive scaling of cluster boundaries
specifically targeting large-scale social media data clustering
were proposed to manage diverse data representations [5].
Particle swarm optimization techniques were implemented
to dynamically adjust vigilance values, enhancing clustering
effectiveness [6]. Most recently, salience-aware approaches for
adaptive resonance theory improved clustering performance
on sparse data [7]. Despite these advancements, a high us-
age threshold remains for non-expert users, highlighting the
need for algorithms that balance enhanced capabilities with
simplicity and usability.

To enhance the vigilance parameter robustness of Fuzzy
ART while ensuring its efficiency and ease of understand-
ing, thereby reducing the difficulty of use, we propose the
Iterative Refinement Fuzzy Adaptive Resonance Theory (IR-
ART). Building upon the traditional iterative process of Fuzzy
ART, IR-ART introduces three core phases to form a new
Iterations module, which includes: Cluster Stability Detection
(CSD), Unstable Clusters Deletion (UCD), and Vigilance
Region Expansion (VRE). These three phases do not perform
clustering activities but instead focus on analyzing and ad-
justing the cluster weights and vigilance parameters, aiming
to lay a stronger foundation for the next iteration. The CSD
phase utilizes the knowledge about the sample size (number
of samples in the cluster) acquired from the previous and
current iterations to evaluate the stability of current clusters.
Subsequently, the UCD phase removes clusters identified as
unstable in the CSD phase, while the VRE phase fine-tunes
ρ to enhance the influence of stable clusters. Through this
iterative process, IR-ART achieves an enhanced robustness of
ρ without introducing additional parameters, preserving Fuzzy
ART’s operational simplicity while enabling non-expert users
to obtain stable clustering across diverse vigilance settings.

We conducted experiments across 15 datasets, evaluating
our method’s effectiveness and universality in terms of Peak
Performance, Mean Performance, and Standard Deviation. We
also plotted clustering metrics as functions of ρ to demonstrate
IR-ART’s performance improvement and robustness to ρ vari-
ations. Finally, we visualized the execution process of IR-ART,
showcasing its advantages through a real case.
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The main contributions of this paper are as follows:
• We propose a novel cluster stability detection method that

identifies unstable clusters by analyzing dynamic changes
in sample assignment during iteration. This replaces tra-
ditional complex computations and manual intervention.

• We design a strategy that jointly deletes unstable clusters
and adjusts the vigilance parameter, enabling its self-
adaptation and improving robustness without introducing
additional predefined parameters.

II. RELATED WORK

Adaptive Resonance Theory (ART) has evolved significantly
since its introduction, addressing various challenges in ma-
chine learning and data clustering. The early foundational
contributions established the theoretical basis, with ART 2
enabling stable category recognition for analog input patterns
[8], and ART 2-A improving rapid category learning [9]. Fuzzy
ART introduced fuzzy logic to enhance stability in learning
and categorization of analog patterns [1], while ARTMAP
extended the framework to support real-time supervised clas-
sification of dynamic data [10]. The distributed ARTMAP
further improved the scalability for fast distributed learning
[11], forming the basis for many subsequent innovations.

To address the sensitivity of ART to data variability, re-
searchers introduced mechanisms such as dynamic vigilance
adaptation to improve adaptability in non-stationary environ-
ments [4] and scaling of cluster boundaries for handling large-
scale clustering tasks [5]. Interventions like interval type-2
fuzzy logic [12] and validity index-guided vigilance tests [13]
enhanced ART’s stability and performance. Additionally, the
mitigation of ordering effects using visualization techniques
like VAT [14] contributed to improving clustering robustness.
Information-theoretic approaches [15], topological clustering
[16], and kernel Bayesian techniques [17] further advanced
the ability of ART to handle complex data structures. Inno-
vations such as dual vigilance models [18] and hypersphere-
based cluster representations [19] provided finer control over
clustering granularity and shape.

Recent developments have expanded ART’s scalability and
flexibility. Distributed frameworks now support online learning
while mitigating sensitivity to presentation order [20]. Hier-
archical clustering algorithms [21], biclustering methods for
relational data [22], and salience-aware clustering techniques
[7] have broadened its applicability. iCVI-ARTMAP, incorpo-
rating incremental cluster validity indices, has demonstrated
improvements in validation efficiency and robustness to data
order [23] [24]. These advancements underscore the ongoing
relevance and adaptability of ART to modern data analysis.

III. FUZZY ART

In Fuzzy Adaptive Resonance Theory (Fuzzy ART), F1 rep-
resents the input field, which receives the input samples,
and F2 represents the category field, which stores the cluster
information. The main content of Fuzzy ART is as follows.

Input vectors: Let x denote a sample in the feature space,
where x = (x1, . . . , xm) and xi ∈ [0, 1] for i = 1, . . . ,m,

and m represents the dimension of the sample. With the
complement coding operation, x is concatenated with its
complement vector x̄ to form the final input feature vector
I = (x, x̄) in the input field F1, where x̄ = 1− x.

Weight Vector: Let wj represent the weight vector of the
j-th cluster Cj (j = 1, . . . , J) in the category field F2.

Parameters: The key parameters in the Fuzzy ART al-
gorithm include the choice parameter α > 0, the learning
parameter β ∈ [0, 1], and the vigilance parameter ρ ∈ [0, 1].
In practice, α is typically chosen to be a very small value.

The three key steps of Fuzzy ART are as follows:
1) Category choice: For each input vector I in F1, Fuzzy

ART calculates the choice function Tj for each cluster
Cj in F2, and selects the cluster Cj∗ as the winner
cluster, where j∗ = argmaxj Tj . The choice function
Tj for I and Cj is computed as follows:

Tj =
|I ∧wj |
α+ |wj |

, (1)

where |·| denotes the L1 norm, and operation ∧ is
defined by (p ∧ q)i ≡ min(pi, qi).

2) Template matching: For I and the winner cluster Cj∗ ,
the match function is calculated as follows:

Mj∗ =
|I ∧wj∗ |

|I|
. (2)

If Mj∗ ≥ ρ, resonance occurs and the input vector I
(representing the sample x) is assigned to the winner
cluster Cj∗ , followed by weight vector updating in Step
3. If Mj∗ < ρ, a new winner cluster is selected from the
remaining clusters in F2. If no winner cluster satisfies
ρ, a new cluster is created to encode I.

3) Prototype learning: If resonance occurs, the weight
vector wj∗ is updated as follows:

w
(new)
j∗ = β(I ∧wj∗) + (1− β)wj∗ . (3)

IV. ITERATIVE REFINEMENT FUZZY ART

A. Overall framework

Fuzzy ART is known to refine weight vectors and im-
prove clustering performance by repeating all samples in the
dataset. We optimize this iterative process and propose a
novel algorithm called Iterative Refinement Fuzzy Adaptive
Resonance Theory (IR-ART). The overall framework of IR-
ART is illustrated in Fig. 1, and its pseudocode is provided in
Algorithm 1. For clarity, we denote the t-th iteration of our
method as Iteration t. IR-ART begins with a single Fuzzy
ART execution on all samples, detailed in lines 1-18 of
the pseudocode. This completes Iteration 1, resulting in a
Temporary Result that serves as the basis for the subsequent
Iterations module. This module comprises the following five
phases, among which (A) and (B) inherit the iterative steps of
Fuzzy ART:
(A) Single-Iteration Fuzzy ART: This phase marks the

beginning of the Iterations module. In this phase, the
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Fig. 1: The upper part of this figure briefly presents the overall framework of IR-ART and the Iterations module is detailed
in the lower part of this figure. Phases (A) and (B) in the Iterations are similar to those in traditional Fuzzy ART iterations,
whereas the core phases of IR-ART are (C), (D), and (E).

iteration count t is increased by 1, and a single exe-
cution of the Fuzzy ART algorithm is performed on all
samples to update the existing weight vectors and sample
assignments before proceeding to the next phase.

(B) Termination Check: This phase evaluates whether the
algorithm satisfies the predefined termination criteria. If
the maximum iteration count is reached or stable sample
assignments are achieved, the algorithm terminates and
outputs the current assignments as the Final Result.

(C) Cluster Stability Detection (CSD): This phase employs
a heuristic method to compare the current and previ-
ous sample assignment results, identifying stable and
unstable clusters. This step lays the foundation for the
subsequent two phases.

(D) Unstable Clusters Deletion (UCD): The weight vectors
corresponding to the unstable clusters identified during
the CSD phase are removed in this phase.

(E) Vigilance Region Expansion (VRE): The vigilance
parameters of the retained clusters are slightly adjusted,
increasing the likelihood of input vectors being incorpo-
rated into these clusters in the next iteration.

As shown in Fig. 1, phases (A) to (E) in the Iterations
module are executed sequentially through multiple iterations,
corresponding to lines 19-33 in the pseudocode. We set
α = 0.001, following [20], and prior studies show clustering
performance is generally robust to this parameter [25]. τ is
given a default small positive value, and tmax can be flexibly
set to limit the number of iterations. Therefore, the usage of
our method remains as simple as Fuzzy ART, with clustering
performance primarily controlled by the preset vigilance pa-
rameter ρ, which constrains intra-cluster similarity and has a

much greater impact on results than the learning rate β.
Subsequent sections will dive into the three core phases of

our method: CSD, UCD, and VRE.

B. Cluster Stability Detection

In this section, we provide a detailed explanation of the
Cluster Stability Detection (CSD) phase, as shown in (C) of
Fig. 1 and lines 26–27 of the pseudocode.

As previously mentioned, repeatedly processing all input
samples typically improves the clustering performance of
Fuzzy ART, largely due to the gradual optimization of weight
vectors. This allows some samples to be reassigned to more
suitable clusters. As a result, a cluster Cj in category field F2

may gain or lose samples over iterations, resulting in changes
in its number of contained samples (referred to as sample size).
Based on this observation, we designed a simple and intuitive
method to take advantage of these changes during the iterative
process to assess cluster stability.

Specifically, let Gt represent the sample assignment in
Iteration t, recording the cluster index for each sample. During
CSD, the algorithm compares the sample sizes of each cluster
between Iteration t and t−1, identifying clusters with de-
creased size as unstable. Clusters with unchanged or increased
size, including new ones in Iteration t, are considered stable.

The rationale is that clusters with reduced sample sizes are
more likely to have imperfect weight vectors or ρ, leading
to unstable cluster structures that make them more prone to
losing samples during iterations. In contrast, clusters with
stable or increased sample sizes are considered to form more
meaningful cluster structures, which provide them with an
advantage during the iterative process.



Algorithm 1 IR-ART
Input: Set of input vectors S = {I1, ..., IN}, vigilance parameter

ρ0, learning rate β, choice parameter α = 0.001, expansion
parameter τ = 0.01, maximum number of iterations tmax.

Output: Set of clusters K, set of weight vectors W , sample assign-
ment Gt in Iteration t.

1: Initialize K = ∅, W = ∅.
2: Initialize current number of iterations t = 1 and initialize Gt.
3: Create cluster C1 using the first sample I1 and ρ0.
4: Update K and W , update G1[1] = 1.
5: for each input vector In (n = 2, . . . , N) do
6: for each cluster Cj in K do
7: Calculate the choice function Tj .
8: Select the winner cluster index j∗ = argmaxj Tj .
9: Calculate the match function Mj∗ .

10: if Mj∗ < ρj∗ then
11: Select a new winner cluster index j∗ and go to step 9.
12: else
13: Update wj∗ in W .
14: Update Gt[n] = j∗.
15: if no winner satisfies the vigilance parameter then
16: Create a new cluster C(new) using In and ρ0.
17: Update K and W .
18: Update Gt[n] = new cluster index.
19: while true do
20: Set t = t+ 1.
21: for each input vector In (n = 1, . . . , N) do
22: Perform Fuzzy ART, the same as steps 6 to 18.
23: if t = tmax or Gt = Gt−1 then
24: return K, W and Gt.
25: else
26: Initialize unstable cluster set U = ∅.
27: Compare Gt and Gt−1 to identify clusters with a reduced

sample size and add them to U .
28: for each cluster Cj in K do
29: if Cj is in U then
30: Delete Cj from K and delete wj from W .
31: Update Gt.
32: for each remaining cluster Cj in K do
33: Set ρ(new)

j = (1− τ)ρ
(old)
j .

As shown in (C) of Fig. 1, the clusters Ca and Cb have
an overlapping vigilance region, which is a typical scenario in
which changes in the sample size of the clusters are likely to
occur. At the end of Iteration t−1, some samples lie within the
overlap. In Iteration t, after one execution of Fuzzy ART, some
samples of Ca are “captured” by Cb, resulting in a decrease in
the sample size of Ca. Therefore, Ca is identified as unstable,
while Cb is considered stable.

C. Unstable Clusters Deletion

The Unstable Clusters Deletion (UCD) phase is depicted in
(D) of Fig. 1 and lines 28–31 of the pseudocode.

Based on the results obtained during the CSD phase, the
UCD phase iterates through all clusters in the current category
field F2. If a cluster is identified as unstable during the CSD
phase, it is removed from F2, preventing its influence on
the Fuzzy ART clustering process in the next iteration. This
involves deleting the corresponding weight vector and the
vigilance parameter and updating Gt. As shown in Fig. 1(D),

wa and ρa of the unstable cluster Ca identified in the previous
phase are removed, which is reflected in the figure as the
disappearance of the weight rectangle and the VRa.

The rationale behind this deletion mechanism is straightfor-
ward: survival of the fittest. Specifically, unstable clusters are
considered to have imperfect weight vectors or ρ, which may
lead to competition with stable clusters for sample assignments
during the iterative process, thereby hindering improvements
in clustering performance. By removing unstable clusters, they
are excluded from competing during the next iteration of the
Fuzzy ART clustering process. This minimizes the influence
of unstable clusters and ensures that high-quality clusters are
prioritized in subsequent iterations, ultimately contributing to
improved clustering outcomes.

D. Vigilance Region Expansion

The Vigilance Region Expansion (VRE) phase is depicted
in (E) of Fig. 1 and lines 32–33 of the pseudocode.

In Fuzzy ART, the vigilance parameter ρ determines the
similarity threshold required for a sample to be assigned to a
cluster. This forms a hyper-octagon in feature space, centered
around the weight hyper-rectangle, known as the vigilance
region (VR). A sample is eligible to be incorporated into the
corresponding cluster only if it falls within this VR.

After the CSD and UCD phases, all clusters in the current
category field F2 are stable. Based on the principle of survival
of the fittest, we propose that a slight expansion of the
VRs for these stable clusters can slightly enlarge the regions
capable of absorbing new samples without disrupting the
overall structure. This enhances the influence of high-quality
clusters in subsequent iterations. Specifically, during the VRE
phase, the algorithm adjusts the vigilance parameter ρj of each
existing cluster Cj in F2 using the following formula:

ρ
(new)
j = (1− τ)ρ

(old)
j , (4)

where τ is a small positive constant controlling the expansion
rate. For simplicity and general applicability, We set τ = 0.01
by default to ensure a moderate and stable adjustment.

By incorporating the VRE phase, our method gains the
ability to dynamically adjust ρ, thereby improving clustering
performance even when ρ is suboptimal. Furthermore, the
combination of VRE and UCD enables a complete processing
of all clusters in F2 during the current iteration. This ensures
that samples in the next iteration are more likely to be assigned
to appropriate clusters rather than forming new clusters, partic-
ularly for those samples left unassigned after the UCD phase.

V. EXPERIMENTS

A. Datasets

To evaluate the applicability of our algorithm in diverse
datasets, we adopted the dataset selection strategy proposed
in [20]. Our experiments involve a combination of 15 real
world and artificial benchmark datasets with various char-
acteristics, which are accessible from [26]–[28]. The key
properties of these datasets are summarized in Table I. Before



TABLE I: Summary of the datasets

dataset samples features clusters type

Aggregation 788 2 7 Artificial
Compound 399 2 6 Artificial

Dermatology 358 34 6 Real World
Face 320 2 4 Artificial
Flag 640 2 3 Artificial

Flame 240 2 2 Artificial
Glass 214 10 6 Real World
Iris 150 4 3 Real World
Jain 373 2 2 Artificial

Moon 514 2 4 Artificial
Path based 300 2 3 Artificial

Seeds 210 7 3 Real World
Spiral 312 2 3 Artificial

Synthetic Control 600 60 6 Real World
Wave 287 2 2 Artificial

the experiments, all datasets were preprocessed using Min-
Max normalization to scale their characteristic values to the
range [0, 1] and further transformed into input vectors through
complement coding [20].

B. Experimental Setup

Our experiments aim to simulate the clustering performance
of a user lacking prior knowledge when employing ART-based
clustering methods. We compared our method with Fuzzy ART
[1], and four methods mentioned in Introduction: CM-ART
[4], AM-ART [4], HI-ART [5], and SA-ART [7]. These meth-
ods were selected for their minimal parameter requirements
and adaptive mechanisms for the vigilance parameter.

For parameter settings, we avoided complex optimization
for individual datasets. Instead, we applied a uniform set of
reasonable and commonly used parameters across all datasets
to minimize dependence on prior knowledge and ensure a
fair comparison. Specifically, the choice parameter α was set
to 10−3. The learning rate β was set to 0.5, reflecting a
moderate level of learning. In SA-ART, λ = 0.5 balanced
frequency and stability. For AM-ART, we evaluated σ from
the set {10−1, 10−2, 10−3, 10−4, 10−5} and selected 10−4,
as it yielded reasonable cluster numbers in most datasets.
Similarly, we set δ in SA-ART and ∆ in CM-ART to 10−4.
Other methods were iterated with tmax = 50, following the
termination criteria specified in line 23 of the pseudocode,
except for CM-ART and HI-ART, which were executed only
once due to rapid cluster growth with further iterations. The
initial vigilance parameter ρ was the sole variable, scanned in
the range [0.05, 0.95] with a step size of 0.01. Each setting was
run 10 times on randomly ordered datasets, and the average
performance metrics corresponding to each ρ were recorded.

We employ two commonly used external cluster validity
indices, Normalized Mutual Information (NMI) and Adjusted
Rand Index (ARI), to evaluate the quality of the clustering
results. Higher values of these indices generally indicate better
clustering performance. More details can be found in [29].

C. Clustering Performance Comparison

As described in the previous section, for each value of ρ,
experiments were conducted with 10 random data input orders.
The average Normalized Mutual Information (aNMI) and the
average Adjusted Rand Index (aARI) were calculated across

these 10 trials. These two metrics are considered to represent
the clustering performance of a given method for a specific ρ
value on a given dataset.

The maximum values of aARI and aNMI obtained during
the ρ scan were taken and are presented in the Peak Perfor-
mance section of Table II. This indicates the best clustering
performance achieved by each algorithm during the scan. The
peak performance of CM-ART, AM-ART, and HI-ART fluc-
tuates across different datasets, and they do not consistently
outperform Fuzzy ART. This is likely due to the distinct char-
acteristics of the datasets and the imperfect settings of other
predefined parameters besides ρ. This implies that achieving
good clustering results with these methods often requires
appropriate adjustments to predefined parameters based on
different data scenarios, which places a higher demand on prior
knowledge. SA-ART achieves the best peak performance on
high-dimensional datasets, such as Glass and Synthetic Con-
trol, consistent with its known strengths [7]. IR-ART achieves
superior performance on lower-dimensional datasets such as
Face and Flag, while also surpassing all other methods except
SA-ART in peak performance on higher-dimensional datasets.
This suggests that, without specific parameter tuning, SA-
ART and IR-ART generally exhibit superior peak clustering
ability compared to other methods. This also demonstrates the
performance improvement of IR-ART over Fuzzy ART.

For ART-based algorithms, only a limited number of ρ
values usually lead to peak performance. Users lacking prior
knowledge are more likely to select a non-optimal ρ than an
optimal one. So we separately calculated the averages of all
aNMI and aARI values obtained during the ρ scan, referred
to as mean average Normalized Mutual Information (mNMI)
and mean aARI (mARI), to evaluate the general clustering
performance of the algorithms. These results are presented
in the Mean Performance section of Table II. The results
indicate that, whether measured by mNMI or mARI, IR-ART
achieves the best performance on most datasets but performs
poorly on a few with specific cluster shapes, such as Spiral.
The other methods show varying strengths and weaknesses
across different datasets, with SA-ART not standing out in
general clustering performance. Furthermore, to investigate the
fluctuations of aNMI and aARI during the scan, we calculated
their standard deviations, denoted as sNMI and sARI, and
compared them with those of SA-ART. These results are
presented in the Standard Deviation section of Table II. It
indicates that IR-ART is less sensitive to changes in ρ during
the scan, whereas SA-ART is more responsive, as sNMI and
sARI are higher for SA-ART than for IR-ART across most
datasets. In summary, we conclude that when users randomly
select ρ due to a lack of prior knowledge, IR-ART is often the
preferred choice among these methods, while other algorithms,
such as SA-ART, are more susceptible to suboptimal ρ, which
can adversely affect their performance. This shows that IR-
ART effectively improves general performance and mitigates
the sensitivity of ART-based clustering algorithms to ρ. Fur-
thermore, in terms of volatility, IR-ART is more stable than
SA-ART. This indicates that IR-ART not only achieves good



TABLE II: Clustering performance of algorithms in terms of NMI and ARI. Abbreviations are used for some datasets and FA
means Fuzzy ART. The optimal results are shown in bold.

Peak Performance Mean Performance Standard Deviation
FA CM-ART AM-ART HI-ART SA-ART Ours FA CM-ART AM-ART HI-ART SA-ART Ours SA-ART Ours

Agg ARI 0.613 0.354 0.469 0.357 0.707 0.779 0.372 0.221 0.259 0.230 0.301 0.502 0.215 0.160
NMI 0.725 0.595 0.607 0.618 0.780 0.849 0.591 0.529 0.523 0.541 0.499 0.674 0.263 0.125

Com ARI 0.638 0.466 0.555 0.436 0.755 0.757 0.366 0.235 0.296 0.236 0.333 0.499 0.269 0.170
NMI 0.691 0.591 0.606 0.587 0.770 0.779 0.536 0.472 0.509 0.473 0.448 0.619 0.294 0.128

Derm ARI 0.300 0.095 0.144 0.105 0.509 0.618 0.134 0.061 0.076 0.067 0.115 0.336 0.172 0.141
NMI 0.498 0.501 0.479 0.505 0.642 0.648 0.453 0.415 0.417 0.421 0.224 0.515 0.276 0.101

Face ARI 0.466 0.442 0.600 0.429 0.216 0.609 0.147 0.151 0.127 0.138 0.091 0.229 0.070 0.182
NMI 0.446 0.522 0.558 0.507 0.473 0.624 0.315 0.313 0.275 0.303 0.244 0.399 0.168 0.089

Flag ARI 0.895 0.593 0.842 0.481 0.730 0.979 0.479 0.323 0.339 0.288 0.424 0.529 0.276 0.235
NMI 0.893 0.670 0.869 0.597 0.798 0.978 0.618 0.502 0.515 0.483 0.554 0.655 0.263 0.209

Flame ARI 0.298 0.128 0.339 0.132 0.454 0.456 0.162 0.060 0.135 0.062 0.176 0.215 0.159 0.104
NMI 0.376 0.317 0.343 0.320 0.510 0.432 0.290 0.240 0.269 0.241 0.245 0.324 0.191 0.079

Glass ARI 0.243 0.190 0.147 0.182 0.390 0.281 0.149 0.088 0.082 0.090 0.106 0.180 0.139 0.080
NMI 0.499 0.510 0.469 0.516 0.584 0.545 0.345 0.272 0.309 0.278 0.201 0.317 0.244 0.156

Iris ARI 0.606 0.493 0.574 0.493 0.707 0.701 0.372 0.230 0.314 0.231 0.320 0.464 0.265 0.169
NMI 0.659 0.554 0.606 0.555 0.750 0.730 0.522 0.383 0.485 0.384 0.401 0.585 0.301 0.132

Jain ARI 0.616 0.378 0.733 0.247 0.560 0.782 0.291 0.167 0.249 0.139 0.210 0.401 0.197 0.210
NMI 0.533 0.367 0.604 0.315 0.499 0.668 0.384 0.279 0.339 0.266 0.286 0.445 0.192 0.089

Moon ARI 0.295 0.219 0.251 0.222 0.290 0.333 0.226 0.163 0.142 0.159 0.152 0.228 0.113 0.061
NMI 0.563 0.541 0.480 0.542 0.593 0.634 0.417 0.431 0.344 0.434 0.300 0.390 0.227 0.135

Path ARI 0.333 0.307 0.281 0.299 0.454 0.468 0.198 0.150 0.152 0.151 0.210 0.272 0.185 0.115
NMI 0.464 0.446 0.406 0.446 0.525 0.536 0.344 0.346 0.321 0.347 0.294 0.383 0.234 0.123

Seeds ARI 0.482 0.265 0.459 0.279 0.651 0.633 0.252 0.131 0.213 0.134 0.254 0.351 0.235 0.156
NMI 0.526 0.421 0.541 0.424 0.646 0.633 0.422 0.323 0.406 0.324 0.329 0.480 0.260 0.094

Spiral ARI 0.098 0.091 0.052 0.093 0.120 0.127 0.052 0.046 0.026 0.045 0.024 0.037 0.041 0.039
NMI 0.449 0.442 0.396 0.443 0.471 0.468 0.166 0.243 0.153 0.243 0.083 0.117 0.146 0.134

Syn ARI 0.066 0.105 0.096 0.179 0.578 0.506 0.035 0.050 0.055 0.076 0.155 0.250 0.189 0.175
NMI 0.467 0.477 0.474 0.486 0.735 0.669 0.370 0.363 0.388 0.383 0.306 0.415 0.300 0.215

Wave ARI 0.170 0.133 0.119 0.133 0.153 0.250 0.101 0.081 0.064 0.079 0.060 0.120 0.049 0.059
NMI 0.383 0.355 0.313 0.355 0.389 0.437 0.210 0.262 0.174 0.261 0.122 0.213 0.137 0.136

overall performance but also ensures actual results remain
close to expectations, thus alleviating the influence of ρ.

To further validate the robustness of IR-ART to ρ, we
selected eight representative datasets and plotted the complete
variation of aNMI, as shown in Fig. 2. We plotted only
four methods with multiple iterations for clarity, omitting the
less effective CM-ART and HI-ART that perform a single
iteration. It can be seen that, in the absence of prior knowledge,
poor parameter settings can lead to AM-ART performing
worse than Fuzzy ART, as indicated in Fig. 2(a). SA-ART
achieves the best peak performance on a few datasets such as
Fig. 2(h), demonstrating its advantage in dealing with high-
dimensional data. However, it exhibits an extreme sensitivity
to ρ on all datasets, with suboptimal values that significantly
reduce its Mean Performance and increase its volatility. On
most datasets, IR-ART significantly outperforms Fuzzy ART,
regardless of whether ρ is optimal, and exhibits a smaller
fluctuation in performance than SA-ART as ρ changes. These
findings indicate that IR-ART can generally enhance the
performance of Fuzzy ART throughout the scanning process,
showing notable robustness to changes in ρ, making it a
suitable choice when prior knowledge is limited. However, on
some datasets with special cluster shapes, IR-ART performs
poorly when ρ is not optimal, even performing worse than
Fuzzy ART, as shown in Fig. 2(g). This issue may be related
to the excessive deletion of clusters.

Fig. 3 shows the average number of clusters obtained during
the ρ scanning process on two datasets. It can be seen that

IR-ART produces a relatively small number of clusters due
to its deletion of unreliable clusters. However, this may also
lead to excessive cluster deletion, which could adversely affect
clustering performance in some cases.

D. Case Study

As shown in Fig. 4, we present the clustering results of
IR-ART on the Flag dataset with a random input order and
ρ = 0.4, using the same parameter settings as described in
the Experimental Setup. Samples and cluster weight rectangles
are visualized in the feature space. Fig. 4(a) shows the results
after one execution of Fuzzy ART in Iteration 1, where cluster
overlap occurs. In Fig. 4(b), Clusters 1 and 2 exhibit a reduced
sample size after Iteration 2, and are subsequently deleted
during the CSD and UCD phases, as shown in Fig. 4(c).
The black triangles represent unassigned samples following
cluster deletion. Fig. 4(d) illustrates that, after one execution
of Fuzzy ART in Iteration 3, these samples are reassigned, and
the termination criteria are met, ultimately achieving perfect
clustering results on the Flag dataset. We also found that values
of ρ within the range of [0.27, 0.46] (with the input order
affecting this range) yield the same optimal results, indicating
that IR-ART exhibits robust performance against variations in
ρ, thus reducing the user’s reliance on expertise regarding ρ.

VI. CONCLUSION

Fuzzy ART is highly sensitive to the vigilance parameter,
which places significant demands on prior knowledge. To
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Fig. 2: Average NMI during ρ scan on eight datasets for Fuzzy ART, AM-ART, SA-ART, and IR-ART.
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Fig. 3: Average number of clusters during ρ scan.

address this issue, we optimize the iterative process of Fuzzy
ART and propose Iterative Refinement Fuzzy Adaptive Reso-
nance Theory (IR-ART). IR-ART integrates three key phases
into the iterative process, continuously removing unstable clus-
ters and fine-tuning the vigilance parameter. Our experimental
results show that IR-ART consistently outperforms traditional
Fuzzy ART on various datasets, even with suboptimal ρ. This
indicates that IR-ART exhibits strong robustness to ρ and can
be effectively applied in scenarios where clustering needs to be
performed with limited expertise. Additionally, It retains the
simplicity of Fuzzy ART without adding preset parameters,
making it more practical for users with limited expertise.

However, our experiments revealed some limitations of
IR-ART, such as repetitive loops, excessive vigilance region
expansion, and difficulties with certain cluster shapes. These
issues highlight opportunities for improvement. Moreover, IR-
ART can serve as a general framework that may be integrated
with other ART-based clustering algorithms, offering promis-

ing directions for future research. In particular, its adaptability
suggests strong potential for further application in domains
such as federated learning [30]–[35] and recommendation
algorithms [36]–[38].
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