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ABSTRACT
Adversarial training is originated in image classification to address
the problem of adversarial attacks, where an invisible perturbation
in an image leads to a significant change in model decision. It re-
cently has been observed to be effective in alleviating the long-tailed
classification problem, where an imbalanced size of classes makes
the model has much lower performance on small classes. However,
existing methods typically focus on the methods to generate pertur-
bations for data, while the contributions of different perturbations
to long-tailed classification have not been well analyzed. To this
end, this paper presents an investigation on the perturbation gener-
ation and incorporation components of existing adversarial training
methods and proposes a taxonomy that defines these methods using
three levels of components, in terms of information, methodology,
and optimization. This taxonomy may serve as a design paradigm
where an adversarial training algorithm can be created by combin-
ing different components in the taxonomy. A comparative study is
conducted to verify the influence of each component in long-tailed
classification. Experimental results on two benchmarking datasets
show that a combination of statistical perturbations and hybrid
optimization achieves a promising performance, and the gradient-
based method typically improves the performance of both the head
and tail classes. More importantly, it is verified that a reasonable
combination of the components in our taxonomy may create an
algorithm that outperforms the state-of-the-art.
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1 INTRODUCTION
The phenomenon of long-tailed distribution[11], in which a small
number of classes dominate the samples, is common in existing
large-scale datasets due to the information imbalance of Internet
data. Long-tailed data may incur biased learning for conventional
machine learning algorithms where the algorithms will favor op-
timizing the prediction for head classes. This usually downgrade
the classification performance for the tail classes. Existing long-
tailed data training methods [1, 3, 7, 10, 12, 22] usually improve the
model’s prediction accuracy for tail classes at the cost of weaken-
ing the optimization of head classes, so the improvement of the
overall classification accuracy is limited. Adversarial training is a
new direction to alleviate the side-effect resulted by the long-tailed
distribution. It is achieved by perturbing the input data or features
[8, 14] for model [19], leading to an effect of data augmentation.

The main difference between existing adversarial training meth-
ods lies in their ways to generate and add perturbations. Commonly-
used perturbation generation methods include stochastic normal
distribution[17], statistical information[2], gradient[5, 8, 13, 19, 21],
Generative Adversarial Networks (GAN) based methods[14]; while
methods to introduce perturbations include data perturbation[5,
8, 13, 14, 19, 21] and feature perturbation[2, 17]. It is worth men-
tioning that existing methods usually make a trade-off between the
model performance and robustness. For example, algorithms to go
against adversarial attacks usually achieve a better robustness but a
lower performance than the backbone model[19]. In addition, most
of the methods are applied to balanced data, their performance on
long-tailed data has not been fully verified. This leads to the need
of a comparative study for existing adversarial training methods to
verify their effectiveness in long-tailed classification.

To address the aforementioned problems, this paper decouples
and reorganizes basic components of existing adversarial training
methods, and proposes a taxonomy for long-tailed classification.
The proposed taxonomy defines existing methods using three levels
of key components, including the information, methodology, and
optimization levels. Among them, information level categorizes
the existing adversarial training methods into data perturbations
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Figure 1: Illustration of the proposed taxonomy for adversarial training methods in long-tailed classification.

and feature perturbations based on their ways to introduce the
perturbations; at the methodology level, the perturbation genera-
tion methods are classified into stochastic, statistic-based, gradient-
based, compound, and GAN-based perturbation; and optimization
level includes two methods termed adversarial optimization and
hybrid optimization. This taxonomy may serve as a design par-
adigm for adversarial training methods, which covers all of the
existing methods in the literature and offers the way to create new
algorithms by combining the components listed in the three levels
of the taxonomy. We verified the effectiveness of existing methods
and their variants on the commonly used long-tailed datasets and
conducted extensive experiments to evaluate the overall accuracy
of a model and compare its performance over the head and tail
classes. Through comparative experiments, the effectiveness of the
combination of various perturbation adding methods and optimiza-
tion methods is analyzed. In the case study, the law of the effects
of various perturbations on the model performance is summarized.
We also discussed the prospects of adversarial training in improv-
ing tail class imbalance in long-tailed classification problems and
maintaining the overall prediction performance of the model.

To summarize, the main contributions of this paper include:

• A taxonomy is proposed to categorize the key components of
adversarial training methods for long-tailed classification. This
facilitates the development of novel algorithms by combining the
three levels of key components in the taxonomy.

• Experimental verification is conducted on the effectiveness of
existing adversarial training methods for long-tailed classifica-
tion. Besides, the effects of the key components presented in the
taxonomy are analyzed. These provide guidelines for the future
development of adversarial training methods.

2 RELATEDWORKS
2.1 Adversarial Training in Image

Classification
Deep neural networks may produce errors in image classification
due to "aberrations" caused by perturbations[4]. Adversarial train-
ing generates and optimizes various perturbations, thereby enhanc-
ing the robustness of models and achieving data augmentation to
improve prediction performance.

Works of applying adversarial training in image classification
mainly combine original data or features with perturbation gen-
erating methods. One common method is generating Gaussian-
distribution-based noise directly or iteratively[5], and combine
noisewith data or features through linear combination[6, 17]. Statistic-
based methods statistics distribution of dataset to generate more
controllable perturbations[2]. Gradient-based perturbation genera-
tion is another approach which based on the gradient of model’s
prediction loss, usually combined with gradient ascent method
based on confused classes[8], adjusting method[13], and attacking
methods like the Fast Gradient Sign Method (FGSM) and Project
Gradient Descent (PGD)[19][21]. GAN-based methods improve gen-
erator and discriminator by adversarial training, and the quality of
sample generation is thus enhanced[14].

2.2 Long-tailed Image Classification
Long-tailed trainingmethods are generally divided into re-sampling,
re-weighting, and loss adjustment. Re-sampling methods recon-
struct the data distribution by sampling algorithms, such as class-
balanced re-sampling [3] , binary-branch training combining com-
mon and reverse sampling[22], retraining the classifier by bal-
anced sampling[7]. Re-weighting assigns weights for classes to
adjust predictions of the model. Curriculum learning[18], weights
normalization[7] of classifier, logits adjustment[12], and applying
expert models[16, 20] are effective re-weighting methods. Loss ad-
justment aims to improve traditional classification loss functions by
altering items[1, 3, 10] to adapt models to long-tailed distribution.

Adversarial training is a new attempt in long-tailed classification.
From the perspective of robustness, [19] introduce compound per-
turbations for adversarial training. At the perspective of accuracy,
works like[2, 8, 17] take random or gradient-based perturbation to
enhance the tail classes training. GAN-based method[14] generates
new samples to alleviate the learning problem of tail classes.

3 TAXONOMY OF ADVERSARIAL TRAINING
METHODS FOR LONG-TAILED
CLASSIFICATION

The proposed taxonomy describes existing adversarial training
methods in long-tailed classification using three levels of compo-
nents , including information, methodology and optimization, as
illustrated in Figure 1. The following sections present their details.
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Figure 2: Illustration of the adversarial training paradigm with data and feature perturbations for long-tailed classification.

3.1 Inofrmation Level
Information level categories existing adversarial training methods
into two classes, i.e., data perturbation and feature perturbation,
based on their ways to introduce the perturbations, as illustrated
in the following sections.

3.1.1 Data Perturbations. We illustrate the process of classification
model training and indicate data perturbations using a black dotted
frame in Figure 1. Data perturbation methods combine original data
X𝑜𝑟𝑖 and perturbations 𝛿 into adversarial data X𝑎𝑑𝑣 . The process
of data perturbations is defined as:

X𝑎𝑑𝑣 = 𝐶 (X𝑜𝑟𝑖 , 𝛿) (1)

where𝐶 (., .) is the combination method such as linear combination.
Existing works[8, 14, 19] perturb data on various generation meth-
ods, which enhances the randomness of the data and the model
learning of the classification boundary.

3.1.2 Feature Perturbations. The perturbation on features usually
refers to combine perturbations 𝛿 and the original features Z𝑜𝑟𝑖
that extracted by the backbone model 𝑓 (.) from original data X𝑜𝑟𝑖 ,
i.e., Z𝑜𝑟𝑖 = 𝑓 (X𝑜𝑟𝑖 ). In Figure 2, we mark the feature perturbation
in classification training using black dotted frame. The formula of
generating adversarial features Z𝑎𝑑𝑣 is:

Z𝑎𝑑𝑣 = 𝐶 (Z𝑜𝑟𝑖 , 𝛿) (2)

where 𝐶 (., .) is the combination method. The perturbation on fea-
tures is implemented by introducing stochastic noise[17] or com-
bining multi-classes features to augment the feature space[2].

3.2 Methodology Level
Methodology level summarizes the existing methods of generating
perturbations. We have classified and numbered the existing meth-
ods in Figure 1 and mark them on Figure 2, which are (1) Stochastic,
(2) Statistic-based, (3) Gradient-based, (4) Compound, and (5) GAN-
based. Among them, (1), (2), (3), and (4) are commonly used for data
and features, (5) is a unique method of data perturbations. Next, we
will introduce them and the specific methods usually chosen.

3.2.1 Stochastic Perturbations. Stochastic perturbations are widely
used to adversarial training. It introduces noises in a random way.
The most commonly used stochastic perturbation 𝛿𝑛 is noise under

Gaussian distribution, the formula is:

𝛿𝑛 ∼ 𝑁 (𝜇, 𝜎2) (3)

where 𝑁 (𝜇, 𝜎2) is the Gaussian distribution with the mean 𝜇 and
the variance 𝜎2. Usually, the standard normal distribution with
𝜇 = 0, 𝜎 = 1 is used [17, 19], in consider of avoiding to introduce de-
viations to the mean while enhancing the variance of data/features.

3.2.2 Statistic-based Perturbations. Statistics-based perturbations
also apply stochastic methods, but in a controllable form. Through
statistical analysis of the overall or partial data/features, the mean,
variance, etc. of the generated perturbations will be set within a
specific range, the formula of Statistic-based perturbations 𝛿𝑠 is:

𝛿𝑠 = 𝑅(𝑆 (V)) (4)
whereV is data/features, 𝑆 (.) is the function of analysing data/features
statistics, and 𝑅(.) is a random generation method, which can be
Gaussian distribution or random combination[2].

3.2.3 Gradient-based Perturbations. In addition to randomly gen-
erating perturbations, gradient-based method use the gradient of
loss through model prediction and combination it with gradient
algorithm to generate perturbations, interfere with the training
progress of the models, as shown in formula:

𝛿𝑔 = 𝐴(∇L(Ŷ𝑜𝑟𝑖 ,Y)) (5)

where Ŷ is predictions, Y is labels, ∇L(., .) is the gradient of pre-
dicting loss, and 𝐴(.) is the gradient algorithm, usually 𝐴(.) can be
easily as gradient ascent[8], or attack algorithm such as PGD[19].

3.2.4 Compound Perturbations. Compound perturbation combines
different perturbations, such as stochastic perturbations and gradient-
based perturbations[19]. First, random perturbation is used to gen-
erate perturbations for data/features, as shown in formula:

V𝑎𝑑𝑣 = 𝐶 (V𝑜𝑟𝑖 , 𝛿𝑠 ) (6)

whereV𝑎𝑑𝑣 andV𝑜𝑟𝑖 represent adversarial and original data/features,
𝛿𝑠 is the stochastic perturbation, and 𝐶 (., .) is the combination
method. After generating the adversarial data/features, gradient-
based methods are applied as:

𝛿𝑠+𝑔 = 𝐴(∇L(Ŷ𝑎𝑑𝑣,Y)) (7)

which is similar to Equation (5), but where Ŷ𝑎𝑑𝑣 is predictions of
adversarial data/features.
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3.2.5 GAN-based Perturbations. GAN enhances the performance
of discriminator and the confidence of samples generated by the
generator through adversarial training. GAN introduces perturba-
tions through generating samples. We succinctly mark it as:

𝛿𝐺𝐴𝑁 = 𝐺𝐴𝑁 (X,Y) (8)

where 𝐺𝐴𝑁 (., .) is GAN, X is data and Y is labels. The work based
on GAN generation[14] realizes the over-sampling of tail class in
unbalanced classification by generating data.

3.3 Optimization Level
After the perturbations are generated by the methods and combined
on the data or features, in the optimization level, the adversarial
optimization optimizes adversarial data/features directly, and the
hybrid optimization improve optimization by some decoupling and
reconstructed optimization methods.

3.3.1 Adversarial Optimization. Adversarial optimization optimizes
model with the adversarial data/features, as shown in Equation (9).

L𝑎𝑑𝑣 = L(Ŷ𝑎𝑑𝑣,Y) (9)

where L is the loss function, which is usually the Cross Entropy
Loss, Cosine Loss[15] or their improved versions, Ŷ𝑎𝑑𝑣 is predic-
tions of adversarial data/features, and Y is labels. Existing works [8],
[9] directly optimize the perturbed or newly generated data/features.

3.3.2 Hybrid Optimization. Hybrid optimization method intro-
duces original data/features to optimize on the basis of adversarial
optimization, and improves the loss function accordingly, which
will be introduced in turn.

Hybrid optimization by adversarial and original data/features.
This hybrid method introduces original data/feature, and the origi-
nal loss is shown as follow:

L𝑜𝑟𝑖 = L(Ŷ𝑜𝑟𝑖 ,Y) (10)
where Ŷ𝑜𝑟𝑖 is the predictions on original data/feature and Y rep-
resents labels. The original loss is linear combined to the loss of
adversarial optimization:

L𝑎𝑑𝑣+𝑜𝑟𝑖 = L𝑎𝑑𝑣 + L𝑜𝑟𝑖 (11)
In addition to data expansion, it is also optimizes the model by

two loss functions simultaneously.
Hybrid optimization by adversarial data/features with regular-

ization. Based on adversarial optimization, regularization term is
introducing to constrain the adversarial training process[19]:

L𝑟𝑒𝑔 = R(Ŷ𝑎𝑑𝑣) (12)
where R is the regularization function and Ŷ𝑎𝑑𝑣 is the predictions
of adversarial data/features. The regularization term constrains
models to better find the optimization direction on the basis of
adversarial optimization. This term is added as:

L𝑎𝑑𝑣+𝑟𝑒𝑔 = L𝑎𝑑𝑣 + L𝑟𝑒𝑔 (13)

Hybrid optimization by adversarial and original data/features
with regularization. The regularization term can be added to original
and adversarial optimization, i.e., merge Equation (11) and (13):

L𝑎𝑑𝑣+𝑟𝑒𝑔 = L𝑎𝑑𝑣 + L𝑜𝑟𝑖 + L𝑟𝑒𝑔 (14)

Table 1: Statistics of the datasets used in the experiments.

Datasets Imbalance Ratio #Classes #Training #Testing
CIFAR 10-LT 0.1 10 20,431 10,000
CIFAR 100-LT 0.1 100 19,573 10,000

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. We use two benchmarking datasets CIFAR 10-LT
and CIFAR 100-LT that are commonly used in long-tailed classifica-
tion for experiments. Their statistics are showing in Table 1.

CIFAR 10-LT is a subset sampled from the CIFAR-10 dataset[9]
which contains 60,000 images in 10 classes evenly. We adopt the
method of Cao et al.[1] to construct the training set of CIFAR 10-LT.
Imbalance Ratio(IR) 𝜌 denotes the ratio of sample sizes𝑛 of the most
sampled class and the least sampled class, i.e., 𝜌 =𝑚𝑎𝑥𝑖𝑛𝑖/𝑚𝑖𝑛𝑖𝑛𝑖 .
Then using exponential decay to compute the sample sizes for other
classes in order. In our experiments, we set 𝜌 = 0.1, i.e., the number
of training samples is from 500 to 5,000, and the testing samples of
CIFAR 10-LT is the same as the CIFAR-10.

CIFAR 100-LT is constructed from the CIFAR-100[9] which
contains 60,000 images in 100 classes evenly. We set 𝜌 = 0.1 so the
number of training samples in CIFAR 100-LT is from 50 to 500 and
the testing set is the same as the CIFAR-100.

4.1.2 Evaluation Measures. In the experiment, we calculated the
Top-1 Accuracy and measured the performance of various methods
in the classification task, the equation of Accuracy is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +𝑇𝑁 )/(𝑃 + 𝑁 ) (15)
Where 𝑇𝑃 , 𝑇𝑁 , 𝑃 , and 𝑁 are True Positives, True Negatives,

Positives, and Negatives. In order to study the effect of methods in
the long-tailed classification, we equally divided classes into head
classes and tail classes[20], i.e., for the CIFAR 10-LT dataset, classes
1-5 is the head and classes 6-10 is the tail; for the CIFAR 100-LT
dataset, the head is classes 1-50 and the tail is classes 51-100. After
that, we calculate the average of the Accuracy in the head and tail.

4.1.3 Implementation Details. Following the work of Cao et al.[1],
we use the ResNet-32 as the backbone of classification models.
The model of backbone without adversarial method is chosen as
our baseline model. The SGD optimizer with momentum of 0.9 is
adopted, and the learning rate ranges from 0.01 to 0.3. The weight
decay of SGD is selected from {0.001, 0.0005, 0.0001}. We set the
batch size to be 128, and models are trained by 100 epochs, on epoch
30 and 60, the learning rate is decayed by 0.1 and 0.01.

4.2 Performance Comparison
In this section, we analyse results of the comparative experiment.
We first experimented methods of perturbing data with noises that
based on standard normal distribution (White Noise) and statistic
(Statistical Noise). We set the coefficient of controlling the noise
size between 0.05-1. We implement RoBal[19] using the settings
of RoBal-N, BLT[8] which perturb on data and a lite version that
constructing of DGC[17] which generate perturbations on features.

We combine methods with different optimization strategies,
the basic components of which are optimization by adversarial
data/features (Adv), optimization by original data/features(Ori),
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Table 2: Comparison results of existing adversarial methods and their extension methods on the CIFAR 10-LT and CIFAR
100-LT datasets. Methods are divided into three levels according to the proposed taxonomy. (All: Top-1 Accuracy of all classes,
Head: average Accuracy of head classes, Tail: average Accuracy of tail classes).

Information Methodology Optimization CIFAR 10-LT CIFAR 100-LT
All Head Tail All Head Tail

Data Perturbation

Stochastic

Adv (White Noise) 85.18 87.84 82.52 54.28 64.96 43.60
Adv+Ori (White Noise) 85.27 88.22 82.32 54.37 65.14 43.60
Adv+KL (White Noise) 84.80 87.54 82.06 54.81 65.26 44.36

Adv+Ori+KL (White Noise) 84.94 88.04 81.84 55.08 65.22 44.94

Statistic-based

Adv (Statistical Noise) 85.10 88.16 82.03 55.58 66.39 44.76
Adv+Ori (Statistical Noise) 85.24 88.42 82.06 55.38 66.54 44.22
Adv+KL (Statistical Noise) 86.10 88.04 84.16 54.86 66.26 43.46

Adv+Ori+KL (Statistical Noise) 85.82 88.66 82.98 56.00 66.36 45.64

Gradient-based Adv (BLT[8]) 85.61 88.98 82.24 54.70 66.64 42.76
Adv+Ori (BLT) 85.03 88.54 81.52 54.35 66.20 42.50

Compound

Adv (RoBal[19]) 72.28 66.58 77.98 30.32 32.96 27.68
Adv+Ori (RoBal) 80.57 80.00 81.14 42.71 52.42 33.00
Adv+KL (RoBal) 77.89 78.30 77.48 43.64 49.82 37.46

Adv+Ori+KL (RoBal) 80.00 79.76 80.24 46.02 54.10 37.94

Feature Perturbation Stochastic Adv (DGC[17]) 83.58 86.64 80.52 50.54 60.74 40.34
Adv+Ori (DGC) 84.93 87.92 81.94 53.78 64.12 43.44

ResNet-32 (Backbone) 84.92 88.14 81.70 54.01 63.96 44.06

and optimization by loss with KL Divergence(KL). The ratio of ad-
versarial data/feature optimization loss and original data/feature
optimization loss is 0.1-2, and the coefficient of KL term ranges from
1-20. Results are reported in Table 2. We can observe the followings:

• Compared with the baseline model, some adversarial training
methods improve the prediction on the tai while maintaining
or even elevating the accuracy of the head, such as Statistical
Noise with Adv+Ori+KL and BLT with Adv. This shows that the
recombining methods may alleviate the problem of reducing the
head in traditional long-tailed classification methods.

• Experiments in the CIFAR 10-LT dataset usingAdv+Ori or Adv+KL
optimization generally achieve better results than that adding
Adv only; and in the CIFAR 100-LT dataset where the classifi-
cation is more complicated, applying Adv+Ori+KL hybrid opti-
mization for further optimization can achieve better predictions.

• Statistical Noise generally gets better performance than White
Noise. It uses the mean of the dataset to limit the range of noise
generation, so that data perturbations are in a more controllable
range. More controllable perturbations can also be better com-
bined with various optimization methods as shown in results.

• RoBal with Adv optimization will make the head prediction drop
significantly. It may be caused by the distorting data distribution
and the loss function. In addition to adding KL items, the problem
can also be alleviate by Ori optimization.

• BLT adds the augmented tail data to each original batch. In the
Adv+Ori optimization, original data downgrade the overall im-
provement compared with Adv and reflect in the head and tail.
This shows that the ratio of adversarial and original data is im-
portant to algorithm designing.

• The comparison of the DGC method with Adv and Adv+Ori
shows that introducing original data/feature constraints may
have a good effect on the feature perturbations method.

4.3 Comparative Study on Performance of
Head and Tail Classes

In this section, we analyse models that have good performance in
experiments. Taking the CIFAR 10-LT as an example, we report the
specific accuracy of each class in detail, as show in Table 3.

The ResNet-32 (Backbone) model is set as a baseline. The predic-
tions of tail classes in models are generally lower than that in head
classes. From the perspective of class accuracy, the best prediction
is usually in the Class 1 or the Class 2; but the prediction accuracy
does not only depend on the number of samples in the class, Class
4 in the head and Class 6 in the tail are the two worst predicted
classes, We will discuss that in Section 4.4.

The RoBal (Adv+Ori) model achieves an improvement of some
classes in the tail at the cost of head predictions drop. The BLT (Adv)
model has obvious optimization of the head. Since BLT introduce
gradient-based perturbations, the process of creating hard samples
lacks randomness compared with noise based methods. When only
using Adv optimization, the improvement of BLT in Class 4 and
Class 6 is limited. After using Adv+Ori optimization, the number
of head samples has been greatly expanded, which leads to Class
4 improved, but the prediction of Class 6 is still poor. The White
Noise (Adv+Ori) model and the Statistical Noise (Adv+KL) model
introduce noise and perturb the data distribution globally, so that
the tail and the poorly classified classes have a chance to be im-
proved. Statistical Noise model combines Adv+KL or Adv+Ori+KL
enhance the constrain, so reducing the downgrading to the head.

The results shows that the introduction of noise can help improve
the performance of tail and poorly classified classes in long-tailed
classification. At the same time, combined with compound opti-
mization methods can maintain the prediction performance of head
classes. On this basis, the use of gradient perturbation for batch
enhancement may be able to further improve the head.

4.4 Effects of Adversarial Training on Latent
Embeddings

As we discuss in Section 4.3, Class 4 (cat) and Class 6 (dog) are
hard to classify. To study the optimization of methods for pre-
dicting indistinguishable classes, we use t-SNE to visualize the
latent embeddings of ResNet-32 (Backbone) model, Statistical Noise
(Adv+Ori+KL) model and Statistical Noise (Adv+KL) model, as
shown in Figure 3.

Compared with the ResNet-32 (Backbone) model, the Statistical
Noise (Adv+KL) model creates an offset and rotation in the feature
space, but at the same time, the two classes are more dispersed
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Table 3: The accuracy of the effectivemethod on theCIFAR 10-LT dataset in each class (Class n: Top-1Accuracy of class n, Head:
average Accuracy of head classes, Tail: average Accuracy of tail classes) Comparison between the best-performing algorithms
on the CIFAR 10-LT dataset in terms of classes (Class n: Top-1 Accuracy of the n-th class, Head: average Accuracy of head
classes (class1 - class5), Tail: average Accuracy of tail classes (class6-class10))

Model Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Head Tail
ResNet-32 (Backbone) 95.40 98.10 86.10 75.60 85.50 76.30 84.40 83.70 83.50 80.60 88.14 81.70
White Noise (Adv+Ori) 95.60 96.70 84.90 78.90 85.00 76.60 85.00 83.90 82.50 83.60 88.22 82.32

Statistical Noise (Adv+KL) 94.00 97.40 85.70 78.20 84.90 80.80 86.90 83.10 86.80 83.20 88.04 84.16
RoBal (Adv+Ori) 92.00 95.00 72.20 68.90 71.90 69.70 89.30 79.00 81.30 86.40 80.00 81.14

BLT (Adv) 96.10 98.50 86.30 75.50 88.50 76.90 87.20 81.40 84.60 81.10 88.98 82.24
DGC (Adv+Ori) 93.80 97.80 86.00 74.80 87.20 77.80 86.70 79.30 83.40 82.50 87.92 81.94

Figure 3: Visualization of latent embeddings in 2-D space. (a) ResNet-32 (Backbone);(b) Statistical Noise (Adv+KL);(c) Statistical
Noise (Adv+Ori+KL).

and the Class dog is clustered more closely, which improves the
predictions in two classes. The range of spatial distribution of the
Statistical Noise (Adv+Ori+KL) model is basically the same, but it
makes the Class cat more concentrated and far away from the Class
dog, so it is more obvious to improve the accuracy of Class cat.

According to this study, it can be found that adversarial training
makes the latent embedding space change significantly, and at the
same time it may get some indistinguishable classes separated, the
Ori optimization could be applied to constrain this change.

4.5 Discussion
As observed from the performance comparison in Section 4.2, the
state-of-the-art algorithms may be further improved with a reason-
able replacement of their components as listed in our taxonomy.
Interestingly, as shown in Table 2, different generation methods for
perturbation favor different optimization components. For example,
Adv+Ori optimization leads to a significant increase in performance
of RoBal while decreasing that of BLT. The incorporating of KL di-
vergence harms the performance of using white noise, but leads to
better performance for the algorithm using statistical perturbations.

In Table 3, using white noise or statistical noise may better im-
prove the performance of tail classes while remaining that of head
classes than some state-of-the-art algorithms. Existing algorithms,
such as gradient-based BLT, outperform baseline over both the head
and tail classes. This illustrates that types of perturbations may
influence the representation learning for the long-tailed data. We
also studied the effect of optimization by visualization. For models
in Figure 3, Statistical Noise (Adv+KL) introduces transformation
of latent embeddings, and after adding Ori optimization, the latent
embeddings are restored while the characteristics of perturbations

are retained. The constraint effects and combination methods of
different optimization can be adopted in various scenes.

5 CONCLUSION
This paper presents a taxonomy of adversarial training for long-
tailed classification, which defines existing methods in three levels
of components, including information, methodology, and optimiza-
tion. Serving as a design paradigm, different adversarial training
algorithms can be created based on the developed taxonomy. Ex-
perimental findings verified that the state-of-the-art algorithms
can be further improved by replacing them with the components
in our taxonomy. Extensive case studies illustrate that such im-
provement is achieved by a reasonable combination of different
perturbation generation and incorporation components in the in-
formation, methodology and optimization levels.

Despite the encouraging results, there is still a number of issues
to be further explored. First, the gains of performance brought by
different perturbations need to be analysed. Secondly, furthering
being designed methods of reorganization of perturbations and
optimizations are critical. The comparative experiments of different
perturbation generation methods demonstrate the significance of
enhancing the randomness of data/features; in optimization, we can
consider performing hybrid or multi-branch algorithms based on
different targets such as optimizing tail classes and difficult classes.
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