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ABSTRACT
Adversarial training in recommendation is originated to improve
the robustness of recommenders to attack signals and has recently
shown promising results to alleviate cold-start recommendation.
However, existingmethods usually shouldmake a trade-off between
model robustness and performance, and the underlying reasons
why using adversarial samples for training works has not been suf-
ficiently verified. To address this issue, this paper identifies the key
components of existing adversarial training methods and presents
a taxonomy that defines these methods using three levels of compo-
nents for perturbation generation, perturbation incorporation, and
model optimization. Based on this taxonomy, different variants of
existing methods are created, and a comparative study is conducted
to verify the influence of each component in cold-start recommen-
dation. Experimental results on two benchmarking datasets show
that existing state-of-the-art algorithms can be further improved by
a proper pairing of the key components as listed in the taxonomy.
Moreover, using case studies and visualization, the influence of the
content information of items on cold-start recommendation has
been analyzed, and the explanations for the working mechanism
of different components as proposed in the taxonomy have been
offered. These verify the effectiveness of the proposed taxonomy
as a design paradigm for adversarial training.
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1 INTRODUCTION
Recommendation for cold-start users and items is a well-recognized
issue. It leads to the ill-posed learning of conventional collaborative
filtering recommenders, such as Matrix Factorization (MF) [8, 15],
such that active users enjoy higher recommendation accuracy than
the cold-start users and popular items have a much higher chance to
be recommended than the cold-start items. Existing studies typically
alleviate it by introducing content [7, 11, 26] and attributes [9, 16]
information of users and items. However, this does not well-address
the "biased learning" problems. Notably, recent studies attempt to
incorporate adversarial training as a new direction to alleviate
the cold-start problems in recommendation, which performs data
augmentation by imposing adversarial perturbations [1, 2, 20].

Existing adversarial training methods can be categorized into
different classes, based on their methods to generate the perturba-
tions and the way to add them to the training process. Specifically,
commonly-used perturbation generation methods include stochas-
tic perturbations [8, 22], statistical perturbations, gradient-based
perturbations [8, 22, 25] and GAN-based perturbations [1, 2, 20].
Such perturbations are added to either the input data [1, 2, 20, 22]
or the pre-extracted intermediate features [8, 25]. It is worth men-
tioning that most of the existing adversarial training methods focus
on the trade-off between model robustness [13, 17] and recommen-
dation performance [8, 22, 25]. Therefore, their effectiveness and
the underlying principles on cold-start recommendation have not
been fully-verified. This leads to the need of a comparative study
on these algorithms and an experimental verification on the key
components that improve the cold-start recommendation.

To this end, this paper presents an investigation on existing
adversarial training algorithms for recommenders and proposes a
taxonomy that redefines them with three levels of key components:
1) information level defines their ways to introduce the perturbation
into the training process, including data perturbation [1, 2, 20, 22]
and feature perturbation [8, 25]; 2) methodology level classifies the
approaches for perturbation generation into stochastic perturba-
tions [8, 22], statistical perturbations, gradient-based perturbations
[8, 22, 25], and GAN-based perturbations [1, 2, 20]; and 3) opti-
mization level indicates the loss signals that are used for model
optimization, termed adversarial optimization and hybrid optimiza-
tion [8, 22, 25]. This taxonomy covers all of the existing adversarial
training algorithms and may serve as a design paradigm, where
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Figure 1: Illustration on the proposed taxonomy of adversarial training methods for recommendation.
an algorithm can be produced by a combination of the key com-
ponents at different levels. Based on this taxonomy, we evaluated
the effectiveness of existing adversarial training algorithms and
their variants for cold-start recommendation on two benchmarking
datasets. Experimental results with respect to performance compar-
ison, cold-start performance, and embedding visualization, suggest
that adversarial training can both effectively alleviate the cold-start
problems in recommendation and improve the overall performance
and robustness of the recommendation model. The reason may
lie in its ability to facilitate the learning of representations in the
embedding space compared to BPR-MF, allowing the embeddings
of users and the items they interacted with tend to be closer. To
summarize, the main contributions of this paper include:
(1) A taxonomy is proposed as a design paradigm of adversarial

training methods for recommendation. It enables the personal-
ized development of adversarial training algorithms by combin-
ing the key components of different levels in the taxonomy.

(2) A comparative study is conducted to verify the performance of
existing adversarial training algorithms for cold-start recom-
mendation on two real-world datasets and analyze the underly-
ing principles through embedding visualization.

2 RELATEDWORK
2.1 Cold-Start Recommenndation
The cold-start problem is common in existing recommendation
datasets, where a few users or items dominate the interactions in
the dataset, due to the imbalance of interactions between users
and items [1, 2, 11, 12]. It may lead to the recommendation ’bias’
that popular items have a much higher chance to be recommended
than the cold-start ones. To alleviate this issue, most of the exist-
ing methods attempts to introduce auxiliary data to improve the
learning of cold-start user (item) representations, such as the users’
personal [11] and social network information [16], and the items’
multi-modal [7, 10, 24, 26] and affinity information [9]. However,
such additional information may not be available in many real-
world cases. To address this problem, a line of studies [12, 14, 19]
attempt to use the rich semantic information from the higher-order
graph structures, targeting at the augmented user-item interactions.
Another line of research [1, 2, 8, 20, 22, 25] uses adversarial training
to augment the cold-start data. Interestingly, a recent study [23]
adopts the dropout mechanism for the input interactions during
training to improve the model generalization capability.

2.2 Adversarial Training in Recommendation
Christian Szegedy discovered that neural networks are vulnerable
to small but intentional adversarial perturbations [21]. This leads
to the research of adversarial training, which aims to improve the
robustness of recommenders by introducing the adversarial sam-
ples in training process [3, 6, 8, 13, 17, 18]. The main procedures of
adversarial training include perturbation generation and addition.
Despite different ways to generate the perturbation, existing algo-
rithms introduce the perturbation in four ways. First, adding pertur-
bations to the intermediate features is the commonly-used method,
for example, Adversarial Matrix Factorization (AMF) [8] adds sto-
chastic and gradient-based perturbations to the low-dimensional
item features, and Fine-grained Adversarial Collaborative Auto En-
coder (FG-ACAE) [25] imposes gradient-based perturbations to the
output features from the encoder. Besides, Adversarial Multimedia
Recommendation (AMR) [22] imposes stochastic perturbations and
gradient-based perturbations on the pre-extracted content features,
Rating Augmentation Generative Adversarial Networks with bias
treatment (RAGAN𝐵𝑇 ) [1] apply GAN-based perturbations to gen-
erate new interactions. Interestingly, Adversarial Pairwise Learning
(APL) [20] and Augmented Reality Collaborative Filtering (AR-CF)
[2] generate new users and items with interactions.

3 TAXONOMY OF ADVERSARIAL TRAINING
METHODS FOR RECOMMENDATION

As illustrated in Figure 1, the proposed taxonomy describes the ex-
isting adversarial training methods with three levels of components,
including information level, methodology level, and optimization
level, which are detailed in the following sections.

3.1 Information Level
As shown in Figure 2, information level categorizes existing ad-
versarial training methods into two classes, i.e. data perturbations
and feature perturbations, based on their ways to introduce the
perturbations, as illustrated below.
3.1.1 Data perturbations. Data perturbations refer to adding ad-
versarial perturbations to the model inputs, defined by

Madv = M + 𝜆Δ (1)
where Madv denotes the perturbed data, M denotes the original
data, Δ denotes the adversarial perturbations, and 𝜆 controls the
magnitude of the adversarial perturbations. Existing studies add
the adversarial perturbations to either the interaction data [1, 2, 20]
or the pre-extracted content features of items [22].
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Figure 2: Illustration on the adversarial training flowchart using BPR-MF for (a) data perturbations and (b) feature perturba-
tions. (1) stochastic perturbations, (2) statistical perturbations, (3) gradient-based perturbations, and (4) GAN-based perturba-
tions are introduced in different stages in the forward pass of the model.
3.1.2 Feature perturbations. Feature perturbations add adversarial
perturbations to the intermediate features produced by the recom-
mendation model, as defined by

vadv = v + 𝜆Δ (2)
where vadv denotes the perturbed features, v denotes the original
features, Δ denotes the adversarial perturbations on features, and
𝜆 controls the magnitude of the adversarial perturbations. As illus-
trated in (1) – (3) in Figure 2(b), existing studies mainly add the
adversarial perturbations to either the item features [8] or to the
features extracted by a CNN encoder [25].

3.2 Methodology Level
Methodology level defines four ways to generate perturbations
including stochastic perturbations, statistic-based perturbations,
gradient-based perturbations, and GAN-based perturbations. The
details of these methods are described as follows.

3.2.1 Stochastic perturbations. Stochastic perturbations are pro-
duced by the generative functions with certain probability density
functions, such as the normal distribution, as defined by

Δ𝑠𝑡𝑜 ≈ N
(
𝑢, 𝜎2

)
(3)

where Δ𝑠𝑡𝑜 denotes stochastic perturbation,N (.) denotes a Gauss-
ian distribution function, 𝑢 and 𝜎2 denotes its expectation and
variance, respectively. Existing studies [8, 22] figure out that using
a simple Gaussian perturbation following the distribution N(0, 0.01)
exhibits a better performance than using a fully stochastic pertur-
bation, and this may improve the robustness of the commonly-used
collaborative filtering algorithms, such as MF.

3.2.2 Statistical perturbations. Statistical perturbations usually fol-
low a pre-defined distribution and therefore do not consider the
statistics of the input data. This may harm the effectiveness of
adversarial training when the generated perturbations are much
smaller or larger than the input values. To address this issue, we pro-
pose the statistical perturbations, which generates the probabilistic
distribution for stochastic perturbations based on the statistical
information of the input data, as defined by

Δ𝑠𝑡𝑎 ≈ G
(
𝑢, 𝜎2, v

)
(4)

where Δ𝑠𝑡𝑎 denotes statistic-based perturbations, v denotes the
original data/features,𝑢, 𝜎2 denotes the pre-determined expectation
and variance based on v, and G (.) denotes a function which could
generate statistic-based perturbations based on 𝑢, 𝜎2, and v. To
avoid the impact of bias in data or features in each epoch due to

the training, we calculate the mean and distribution of v from the
10th to the 100th batch in each epoch and use it as parameters to
generate statistical perturbations based on the normal distribution.
As shown in Figure 2(a) and 2(b), statistical perturbations can be
added both on data and on features.

3.2.3 Gradient-based perturbations. Gradient-based perturbations
are generated based on the gradients back-propagated to optimize
the model, which is usually obtained by

Δ𝑔𝑟𝑎 ≈ 𝜖H(𝑔) (5)
where Δ𝑔𝑟𝑎 denotes gradient-based perturbations, 𝜖 controls the
magnitude of gradient-based perturbations, 𝑔 denotes the gradient
information, andH (.) denotes a transformation function. Existing
studies usually use the fast gradient method (FGM) [6, 8, 25] and the
fast gradient sign method (FGSM) [6, 22] to generate the gradient-
based perturbations, which are approximated by a linear function.

3.2.4 GAN-based perturbations. GAN-based perturbations are gen-
erated based on Generative Adversarial Networks (GAN) [5], which
can capture the data distribution through an adversarial process
between generators and discriminators and thus generate synthetic
but realistic data. GAN-based perturbations can be defined as

vGAN = v + Δ𝐺𝐴𝑁 (6)
where vGAN denotes virtual data generated by GAN, v denotes the
original data, and Δ𝐺𝐴𝑁 denotes GAN-based perturbations which
are generated from Ev∼𝑝data (v) [lnD(v)] − Ez∼𝑝𝑧 (z) [lnD(G(z))].
As shown in (4) in Figure 2(a), a common approach for existing
GAN-based perturbation research in recommendation is to generate
virtual interactions based on GAN to perform data augmentation
on the original interactions [1, 2, 20]. Notably, applying GAN-based
perturbations to features has not been investigated so far.

3.3 Optimization Level
The optimization methods of existing adversarial training algo-
rithms mainly include adversarial optimization and hybrid opti-
mization, both of which can be treated as playing a minimax game,
as defined by

Θ∗,Δ∗ = argmin
Θ

max
Δ, ∥Δ∥≤𝜖

Loss (7)

where 𝐿𝑜𝑠𝑠 indicates the loss terms used in a specific algorithm, the
learning algorithm for the model parameters Θ is the minimizing
player, while the procedure of generating perturbations Δ acts
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as the maximizing player, whose aim is to generate worst-case
perturbations for the current model.

3.3.1 Adversarial optimization. Adversarial optimization refers to
using solely the adversarial samples to optimize the model. It holds
by the hypothesis that iteratively training the model using the
adversarial samples is sufficient. It defines the loss function as

Loss = 𝐿(I;Θ,Δ)
where Δ = arg max

Δ, ∥Δ∥≤𝜖
𝐿(I;Θ,Δ) (8)

where I denotes the input on the model, Θ denotes the current
model parameters, Δ denotes the adversarial perturbations, 𝐿(.) de-
notes the loss function of adversarial samples (the most commonly
used in recommendation are Bayesian Personalized Ranking (BPR)
[7] and cross-entropy (CE) [25] loss function), and 𝜖 ≥ 0 controls
the magnitude of the perturbations. The data used for testing is
the clean one without perturbations. Therefore, if adversarial opti-
mization can still perform better in the testing stage, it could not
only illustrate that adversarial training solely based on adversarial
samples can also bring performance improvement, but also prove
that this method effectively improves the model’s robustness.

3.3.2 Hybrid optimization. Hybrid optimization means that the
recommendation model is optimized by the combination of original
samples and adversarial samples. To address the two requirements
of being suitable for personalized ranking and remaining robustness
against adversarial perturbations, in addition to minimizing the loss
𝐿(I;Θ) of the original samples, hybrid optimization also regular-
izes the model by minimizing the loss 𝐿(I;Θ,Δ) of the adversarial
samples. The loss function is defined as

Loss = 𝐿(I;Θ) + 𝜆𝐿(I;Θ,Δ),
where Δ = arg max

Δ, | |Δ | | ≤𝜖
𝐿(I;Θ,Δ) (9)

where I denotes the input on the model, Θ denotes the current
model parameters, Δ denotes the adversarial perturbations, 𝜆 con-
trols the magnitude of the adversarial term, 𝐿(.) denotes the loss
function of original and adversarial samples and 𝜖 ≥ 0 controls the
magnitude of the perturbations. The optimization objective of the
recommendation models in existing studies [8, 22, 25] is usually
the original samples and the adversarial samples, i.e., minimizing
the loss 𝐿(I;Θ) of the original samples and the loss 𝐿(I;Θ,Δ) of
the adversarial samples at the same time, and train it based on the
minimax game mentioned above until convergence.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. We conduct experiments on the reorganized adver-
sarial training algorithms based on the above taxonomy with two
publicly available datasets. Table 1 summarizes the statistics of the
datasets. One, called Allrecipes, was crawled from Allrecipes.com
by Gao et al. in [4]. Each of the interactions in Allrecipes represents
that the user has tried this recipe. The other is MeishiChina, which
was crawled from a Chinese food sharing platform, MeishiChina,
by Meng et al. in [15]. It is the first published Chinese food dataset
so far, and each interaction in MeishiChina represents the user who
has collected or commented on the recipe. We used the interaction

Table 1: Statistics of the experimented datasets.
Datasets #Interactions #Users #Items #Sparsity
Allrecipes 1,093,845 68,768 45,630 99.97%

MehishiChina 515,082 64,029 72,796 99.99%

information and image information from the above two datasets to
verify the reorganized algorithms in the taxonomy we proposed.

4.1.2 Evaluation measures. Five popular evaluation measures were
employed to evaluate the performance of recommendation, includ-
ing Precision (P), Recall (R), F1-Score (F), Normalized discounted
cumulative gain (NDCG), and Area under ROC curve (AUC) [15].
Five hundred items are randomly selected from the dataset along
with all positive items to form a ranking list for each user. P@K,
R@K, F@K, and NDCG@K compute their performance for the Top-
k ranked items in all sampled items. AUC measures the probability
that a recommender will rank a positive sample higher than a ran-
domly chosen negative one. To alleviate the problem of randomness,
we repeated the evaluation process five times, and the average value
is taken as the final performance.

4.1.3 Implementation details. Note that the purpose of this work
is to propose an adversarial training-based taxonomy to alleviate
the cold-start problems in recommendation, rather than developing
new recommendation models. Therefore, we selected MF as the
backbone of this study and optimized it with BPR. MF has been
recognized as the basic yet most effective model in recommendation
which represents each user and item in the form of an embedding
vector, and its core idea is to estimate the user’s preference score
on an item as the inner product between their embedding vectors.
BPR-MF (ResNet18) replaces the latent item embedding with the
pre-extracted visual features extracted with ResNet18. To fairly
evaluate all algorithms above, we fix the embedding size to 64, tune
the learning rate in [0.001, 0.005, ..., 0.5] and optimize them based on
Adagrad with the batch size of 64 for baseline models BPR-MF [8]
and BPR-MF (ResNet18) [15]. For adversarial training algorithms,
we tune 𝜖 in [0.0001, 0.001, ..., 1000] and 𝜆 in [0, 0.05, ..., 1].

4.2 Performance Comparison
This section reports the experimental performance of two base-
line algorithms (BPR-MF and BPR-MF (ResNet18)) and eighteen
reorganized adversarial training algorithms based on the taxon-
omy we proposed on two datasets, Allrecipes and MeishiChina.
The hyperparameters of all algorithms were tuned based on the
implementation details proposed in Section 4.1.3 to obtain the best
performance. From Table 2, we can observe the following points:

• BPR-MF with pre-extracted virtual features of items achieves an
increase on all performance measures than with items’ latent
embeddings on Allrecipes. The opposite effect was achieved on
MeishiChina, which is due to its sparsity.

• Most of the reorganized adversarial training algorithms from
the taxonomy obtain better results than baseline algorithms on
all performance indicators of these datasets, which proves the
necessity of applying adversarial training in recommendation.

• Adding perturbations to data achieves more competitive per-
formance than adding perturbations to features among all the
reorganized adversarial training algorithms with pre-extracted
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Table 2: Performance comparison between two baseline algorithms and eighteen reorganized adversarial training algorithms
based on our proposed taxonomy. (Base1: BPR-MF; Base2: BPR-MF (ResNet18) with visual features extracted by ResNet18;
DP: Data perturbations; FP: Feature perturbations; STO: Stochastic perturbations; STA: Statistical perturbations; FGM: Fast
gradient method; FGSM: Fast gradient sign method; AO: Adversarial optimization; HO: Hybrid optimization)

Item
Representation Algorithms Allrecipe Dataset MeishiChina Dataset

P@10 R@10 F@10 NDCG@10 AUC P@10 R@10 F@10 NDCG@10 AUC

Latent Embedding

BPR-MF [15] (Base1) 0.0783 0.2635 0.0965 0.3139 0.8254 0.0554 0.2130 0.0584 0.2016 0.7675
Base1+FP+STO+AO 0.0785 0.2645 0.0968 0.3146 0.8258 0.0555 0.2122 0.0583 0.2018 0.7672
Base1+FP+STA+AO 0.0785 0.2646 0.0969 0.3149 0.8258 0.0560 0.2155 0.0591 0.2029 0.7672
Base1+FP+FGM+AO 0.0792 0.2640 0.0971 0.3143 0.8255 0.0556 0.2131 0.0585 0.2019 0.7666
Base1+FP+FGSM+AO 0.0792 0.2646 0.0973 0.3153 0.8272 0.0559 0.2149 0.0590 0.2023 0.7676

Base1+FP+FGM+HO [8] (AMF) 0.0797 0.2659 0.0978 0.3166 0.8285 0.0572 0.2183 0.0603 0.2071 0.7703
Base1+FP+FGSM+HO 0.0800 0.2669 0.0982 0.3170 0.8295 0.0574 0.2177 0.0602 0.2061 0.7709

Pre-Extracted
Features

BPR-MFResNet18 [15] (Base2) 0.0799 0.2674 0.0981 0.3185 0.8036 0.0507 0.1974 0.0525 0.1972 0.7633
Base2+DP+STO+AO 0.0821 0.2728 0.1005 0.3232 0.8226 0.0522 0.2076 0.0554 0.2026 0.7680
Base2+DP+STA+AO 0.0820 0.2726 0.1005 0.3225 0.8298 0.0518 0.2013 0.0537 0.2016 0.7656
Base2+DP+FGM+AO 0.0820 0.2726 0.1005 0.3222 0.8297 0.0520 0.2050 0.0547 0.2016 0.7685
Base2+DP+FGSM+AO 0.0820 0.2726 0.1005 0.3220 0.8288 0.0523 0.2081 0.0557 0.2046 0.7701

Base2+DP+FGM+HO [22] (AMR) 0.0822 0.2733 0.1008 0.3222 0.8287 0.0534 0.2136 0.0573 0.2055 0.7753
Base2+DP+FGSM+HO 0.0821 0.2726 0.1006 0.3223 0.8293 0.0537 0.2098 0.0564 0.2048 0.7701
Base2+FP+STO+AO 0.0819 0.2725 0.1005 0.3219 0.8339 0.0515 0.2002 0.0536 0.1999 0.7653
Base2+FP+STA+AO 0.0804 0.2674 0.0985 0.3190 0.8054 0.0515 0.2018 0.0535 0.2015 0.7660
Base2+FP+FGM+AO 0.0754 0.2441 0.0912 0.3000 0.7720 0.0510 0.1983 0.0528 0.1977 0.7633
Base2+FP+FGSM+AO 0.0820 0.2723 0.1005 0.3222 0.8369 0.0500 0.1952 0.0516 0.1936 0.7626
Base2+FP+FGM+HO 0.0818 0.2721 0.1003 0.3214 0.8331 0.0519 0.2010 0.0538 0.2005 0.7633
Base2+FP+FGSM+HO 0.0820 0.2727 0.1005 0.3221 0.8329 0.0516 0.1989 0.0532 0.1988 0.7630

visual features. This is mainly because in this way recommenda-
tion models can mine adversarial samples directly and deeply so
as to improve their performance on original samples.

• Adversarial training algorithms with gradient-based perturba-
tions outperform those with stochastic or statistical perturbations
in most performance metrics. It is due to the fact that gradient-
based perturbations can maximize the objective function in the
above minimax game, and then bring the best optimization effect.

• Adversarial training algorithms based on hybrid optimization
outperform those based on adversarial optimization, and they
both achieve better performance than the baseline algorithms.
This not only verifies that both of the above-mentioned opti-
mization methods can effectively improve the precision of recom-
mendation models, but also demonstrate that these optimization
methods promote the robustness of recommendation models.

4.3 Ablation Study for Performance of
Cold-Start and Warm-Start Data

The imbalance of interactions in recommendation datasets is signifi-
cant. To verify the effectiveness of adversarial training in alleviating
the cold-start problems in recommendation, we divided Allrecipes
and MeishiChina into two parts, i.e., the cold-start set with a few
interactions and the warm-start set with a relatively large number
of interactions. Finally, we conducted experiments to test the perfor-
mance of the reorganized adversarial training algorithms on these
sets. The observations form Table 3 can be drawn as following:

• Adversarial training algorithmswith pre-extracted visual
features could alleviate cold-start problems: "Base1" repre-
sents items with latent embeddings, and does not yield signifi-
cant precision improvement; while "Base2" uses pre-extracted
visual features, and achieves significant improvement on both
two datasets and their divided datasets. This verifies that the
importance of visual information in adversarial training in alle-
viating cold-start problems in recommendation.

Table 3: The recommendationperformance of different base-
line algorithms and reorganized adversarial training algo-
rithms on the cold-start and warm-start sets.
````````Algorithms

Datasets Allrecipes MeishiChina
Cold Warm All Cold Warm All

BPR-MF [15] (Base1) 0.0348 0.1682 0.0783 0.0249 0.1210 0.0554
Base1+FP+STO+AO 0.0349 0.1679 0.0785 0.0246 0.1215 0.0555
Base1+FP+STA+AO 0.0349 0.1682 0.0785 0.0250 0.1214 0.0560
Base1+FP+FGM+AO 0.0346 0.1705 0.0792 0.0249 0.1209 0.0556
Base1+FP+FGSM+AO 0.0348 0.1712 0.0792 0.0248 0.1214 0.0559

Base1+FP+FGM+HO [8] 0.0349 0.1718 0.0797 0.0253 0.1247 0.0572
Base1+FP+FGSM+HO 0.0351 0.1723 0.0800 0.0250 0.1252 0.0574

Improvement of the best
model over baseline 0.78% 2.42% 2.12% 1.61% 3.53% 3.53%

(a) Performance in Recommendation based on Latent Embedding Measured by
Precision@10

````````Algorithms
Datasets Allrecipes MeishiChina

Cold Warm All Cold Warm All
BPR-MFResNet18 [15] (Base2) 0.0352 0.1712 0.0799 0.0235 0.1080 0.0507

Base2+DP+STO+AO 0.0358 0.1772 0.0821 0.0246 0.1110 0.0522
Base2+DP+STA+AO 0.0358 0.1770 0.0820 0.0240 0.1100 0.0518
Base2+DP+FGM+AO 0.0358 0.1771 0.0820 0.0243 0.1105 0.0520
Base2+DP+FGSM+AO 0.0358 0.1765 0.0820 0.0246 0.1114 0.0523

Base2+DP+FGM+HO [22] 0.0358 0.1771 0.0822 0.0252 0.1138 0.0534
Base2+DP+FGSM+HO 0.0359 0.1769 0.0821 0.0246 0.1152 0.0537
Base2+FP+STO+AO 0.0358 0.1765 0.0819 0.0236 0.1095 0.0515
Base2+FP+STA+AO 0.0352 0.1733 0.0804 0.0242 0.1093 0.0515
Base2+FP+FGM+AO 0.0319 0.1649 0.0754 0.0236 0.1089 0.0510
Base2+FP+FGSM+AO 0.0358 0.1771 0.0820 0.0232 0.1066 0.0500
Base2+FP+FGM+HO 0.0357 0.1767 0.0818 0.0239 0.1110 0.0519
Base2+FP+FGSM+HO 0.0358 0.1769 0.0820 0.0237 0.1107 0.0516

Improvement of the best
model over baseline 2.00% 3.46% 2.97% 7.24% 6.60% 6.03%

(b) Performance in Recommendation based on Pre-Extracted Features Measured by
Precision@10

• Adversarial training algorithmsprovide better alleviation
of cold-start problems on "colder" datasets:The average num-
ber of users’ interactions for Allrecipes is 15.91, compared to
8.05 for MeishiChina. However, adversarial training algorithms
achieve better precision enhancements on MeishiChina. This ver-
ifies that adversarial training could alleviate cold-start problems
on "colder” datasets better.
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(a) Base1 (b) Base1+FP+FGM+AO (c) Base1+FP+FGM+HO
Figure 3: Visualization of the learned t-SNE transformed representations derived from Base1, Base1+FP+FGM+AO, and
Base1+FP+FGM+HO. Wherein, each star is a user, and the points with the same color denote the relevant items.
• Adversarial training algorithms with gradient-based per-
turbations andhybrid optimization achieve themaximum
performance improvement: Adversarial training algorithm
with gradient-based perturbations and hybrid optimization achieves
the highest improvement, regardless of the baseline algorithms or
the datasets. This indicates that gradient-based perturbations can
maximize the objective function in the above minimax game, and
the hybrid optimization method performs adversarial regulariza-
tion on the basis of optimizing original samples, which jointly
bring the highest improvement in cold-start recommendation.

4.4 Visualization of Embedding vectors
transformed by t-SNE

In this section, we attempt to investigate how the adversarial train-
ing algorithms facilitate representation learning in the embedding
space. For this purpose, we randomly selected five users and items
they had interacted with, which have been fully trained in the train-
ing phase, to explore how their embedding representations change
in different algorithms. Figures 3(a), 3(b), and 3(c) show the visualiza-
tion of the representations derived fromBase1, Base1+FP+FGM+AO,
and Base1+FP+FGM+HO, respectively.

We notice that the connectivity of users and items is well re-
flected in the embedding space, that is, they are embedded in a prox-
imal part. In particular, the representations of Base1+FP+FGM+AO,
and Base1+FP+FGM+HO, based on adversarial training, exhibit
clear clustering compared to Base1, i.e., points with the same color
(items interacted with the same user) tend to form clusters. These
observations verify that adversarial training algorithms can effec-
tively facilitate the learning of representations in the embedding
space, allowing the embeddings of users and items they interacted
with tend to be closer. This may be a reason for the improved per-
formance of adversarial training algorithms in recommendation.

4.5 Discussion
From the performance comparison between the existing methods
and the reorganized algorithms based on the taxonomy in Section
4.2, it can be concluded that the state-of-the-art algorithms can be
further improved by rational replacement of components in the
taxonomy. We also found that the recommendation based on pre-
extracted features is worse than that based on latent embedding
in MeishiChina, which may due to the combination of the more
’colder’ dataset and the pre-trained model based on ImageNet can-
not effectively extract food visual features. As shown in Table 3,
by comparing the precision between the reorganized algorithms
with the existing studies [8, 22] on the cold-start and warm-start

sets, we found that the reorganized algorithms achieve better per-
formance in most of the divided datasets. At the same time, we also
found that adding visual information to the adversarial training can
improve its ability in alleviating the cold-start problems in recom-
mendation by contrasting the improvements of the best adversarial
training algorithms over the baseline algorithm. From Figure 3, we
discover that adversarial training can promote the learning of the
representations of users and items in the embedding space, so that
the embedding of items tends to be closer to the users they have
interacted with and further away from the users they have never in-
teracted, and thus improve the precision of recommendation model.
This is possibly the reason why adversarial training algorithms can
effectively alleviate the cold-start problems in recommendations.

5 CONCLUSION
This paper presents a taxonomy thatmay serve as a design paradigm
of adversarial training algorithms for cold-start recommendation.
Existing adversarial trainingmethods for recommendation typically
consider one aspect of perturbation generation or incorporation
process, and the underlying principles on how these methods work
have not been fully-verified. The taxonomy addresses this issue
by dismantling and reorganizing existing adversarial training algo-
rithms at three levels of key components, including information,
methodology, and optimization, and then exploring their effec-
tiveness and possible mechanism for cold-start recommendations.
Experimental results show that the reorganized adversarial training
algorithms based on this taxonomy outperform existing studies in
some cases, which reflects the effectiveness of the taxonomy. Fi-
nally, this paper demonstrates through visualization that adversarial
training alleviates the cold-start problem by further facilitating the
learning of user and item representations in the embedding space.

Future work of this research may focus on two directions. First,
we plan to conduct full coverage experiments for each reorganized
algorithm of the taxonomy to analyze the applicability of each
method through it. Second, we desire to propose a new algorithm
based on the taxonomy that could improves its ability to represent
users and items through adversarial training, and thus achieves the
best performance on all evaluation measures for each datasets.
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