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Abstract The prevalence of long-tailed distributions
in real-world data often results in classification
models favoring the dominant classes, neglecting the
less frequent ones. Current approaches address the
issues in long-tailed image classification by rebalancing
data, optimizing weights, and augmenting information.
However, these methods often struggle to balance the
performance between dominant and minority classes
because of inadequate representation learning of the
latter. To address these problems, we introduce
descriptional words into images as cross-modal privileged
information and propose a cross-modal enhanced method
for long-tailed image classification, referred to as
CMLTNet. CMLTNet improves the learning of intra-
class similarity of tail-class representations by cross-modal
alignment and captures the difference between the head
and tail classes in semantic space by cross-modal inference.
After fusing the above information, CMLTNet achieved
an overall performance that was better than those of
benchmark long-tailed and cross-modal learning methods
on the long-tailed cross-modal datasets, NUS-WIDE and
VireoFood-172. The effectiveness of the proposed modules
was further studied through ablation experiments. In a
case study of feature distribution, the proposed model
was better in learning representations of tail classes, and
in the experiments on model attention, CMLTNet has the
potential to help learn some rare concepts in the tail class
through mapping to the semantic space.
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1 Introduction

The long-tailed phenomenon in a data distribution
means that most samples belong to a small number
of head classes, with many tail classes occupying
only a small part of the samples. Learning image
classification from long-tailed data tends to cause
the model to be dominated by the head class,
resulting in poor accuracy on the tail. Therefore,
existing studies mainly attempt to rebalance the
data distribution [1, 2] and reassign the optimization
weights to compensate for the tail [3–5]; however,
the lack of diversity in tail-class information
may necessitate a trade-off between head and
tail performance. Therefore, recent studies have
proposed the application of data augmentation [6–8],
adversarial training [9, 10], and transfer learning
[11] to supplement the information on tail classes.
However, these methods in visual modality face
the dilemma of adversely affecting the head or
exacerbating the imbalanced situation, as they
still play a role in rebalancing. Therefore, when
representation learning is not sufficiently improved,
problems like interference from background noise may
be more serious in tail classes and can hinder solutions.

Due to the popularity of multi-modal data
[12], images are usually accompanied by semantic
information such as tags or description words,
which make it easier for the classification model to
distinguish confusing classes, as shown in Fig. 1.
Therefore, cross-modal semantic information is
introduced to supplement the training process,
such as in learning using privileged information
(LUPI) paradigm [13, 14], which has potential for
improving the representation learning of the model.
Studies in this area are primarily divided into
cross-modal constraint and cross-modal alignment
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Fig. 1 Visualization of distributions. (a) In visual space, distribution
of visual features among classes is messy, with tail features intermixed
with the head class. (b) In semantic space, the intra-class distribution
of the head is more concentrated, and the tail features are distributed
in specific regions that can be clearly distinguished.

methods. Cross-modal constraint methods utilize
semantic information as an additional constraint in
local [15, 16] or global feature extraction [17, 18],
whereas cross-modal alignment methods make the
range [19, 20] or distribution [21, 22] of visual and
semantic features more similar. However, existing
studies achieve limited performance gains because of
uncontrollable constraints and modal heterogeneity.
In addition, because the long-tailed distribution can
also exist in semantic space, the bias may be further
exacerbated in cross-modal learning [23].

To address the aforementioned problems, we
propose a cross-modal learning method, termed
CMLTNet, to improve the learning of visual
representations in long-tailed image classification.
Through the introduction of cross-modal semantic
information, the visual representations are enhanced
for both the head and the tail classes. The overall idea
of CMLTNet is shown in Fig. 2, which consists of three
main processes, alignment between cross-modal
information, inference from visual to semantic

Fig. 2 CMLTNet improves representation learning in long-tailed image
classification for both head (blue triangles) and tail (red circles) classes.
In visual space, features are scattered, and decision-making is dominated
by the head class, whereas representations learned from description
words are clear in semantic space. CMLTNet encourages the model to
learn from semantic information during training through the alignment
of feature distribution and mapping from visual to semantic space.

space, and the cross-modal information fusion. To
make full use of the information in the semantic
modality during training, we first propose feature-
level alignment to make the cluttered visual features
more similar to the focused and distinguishable
semantic features. Since the alignment has limited
effects due to the modal heterogeneity, in another
aspect, we encourage the model to map from visual
to semantic space, that is, visual–semantic inference,
finding the meaningful semantic information from
visual features to achieve communication between
modalities. Finally, the representation learning of the
model is enhanced from the fusion of distribution
alignment and visual–semantic inference, which
improves the intra-class similarity and inter-class
discrimination learning to achieve better performance
on long-tailed image classification.

In experiments, the effectiveness of CMLTNet was
demonstrated on two cross-modal long-tailed datasets,
NUS-WIDE and VireoFood-172. The experimental
results show that the proposed method can effectively
enhance the prediction of the entire class, especially the
tail classes, without head loss. In the ablation study, we
analyzed the effectiveness of cross-modal alignment and
inference, and the effects of different fusion strategies.
The enhancement effect of CMLTNet on representation
learning and the improvement of model attention to
long-tailed data in cross-modal learning were further
demonstrated through case studies.

The main contributions of this study are as follows:
• Incorporating cross-modal privilege information

into long-tailed image classification was explored,
thereby proposing CMLTNet to effectively
improve representation learning and alleviate
the problem of long-tailed image classification
in vision, which is pioneering work.

• The effectiveness of cross-modal learning methods
on long-tailed image classification was analyzed,
thereby proposing a model-agnostic “alignment–
inference–fusion” framework with the advantages
demonstrated in representation learning and
filtering visual noise.

2 Related works

2.1 Long-tailed image classification

Existing approaches for long-tailed image classi-
fication typically focus on addressing imbalanced
data distributions and biased optimization weights.
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Concerning data distribution rebalancing, various
resampling techniques such as reverse sampling
[1] and square-root sampling [24] are employed
to redistribute the weight of the class samples.
Nevertheless, it is worth noting that resampling
can sometimes lead to overfitting of tail classes.
Consequently, resampling is typically utilized as a
strategy for classifier retraining in decoupling training
[2] or as a method to balance sampling branches
in dual-branch learning [1]. By contrast, the loss
weight adjustment method aims to mitigate bias by
compensating for tail classes, which involves adjusting
loss weights based on the training sample distribution
[3, 4, 25] or model predictions [26, 27].

Although these approaches have alleviated bias
in model decision-making to a certain extent, they
often fall short in providing sufficient information
to enhance model learning of visual representations.
This limitation makes it challenging to achieve overall
performance improvement. Consequently, methods
that leverage data augmentation to diversify tail
samples [6] have been proposed. These techniques
may involve the use of head samples to augment
tail samples at either the sample or feature level
[28, 29]. Methods rooted in contrastive learning
enhance long-tailed classification performance by
improving the selection of positive and negative
samples and optimizing contrastive loss [30, 31].
Furthermore, adversarial training can effectively
distinguish between head and tail samples by
introducing perturbations [9, 10]. Apart from these
methods, there are also approaches that leverage
multi-expert mixture [32], causal inference [33], and
biased optimization in long-tailed image classification.

2.2 Cross-modal learning for image classi-
fication

Incorporating cross-modal semantics into the pre-
training of visual models has been demonstrated to
significantly improve model generalization capabilities
for downstream tasks [34]. However, a noteworthy
limitation is the inability to effectively address
modal heterogeneity [35], which leads to an extensive
reliance on substantial training data to build visual–
semantic relationships.

In real-world scenarios, the availability of cross-
modal text data for images is often limited. Therefore,
it is essential to address the challenge of modal
heterogeneity within the context of LUPI [13, 14].

Two primary approaches have emerged to address
this issue: implicit cross-modal constraints and
explicit cross-modal alignment. The cross-modal
constraint method leverages semantic information
as a predictable label to constrain the semantic
information prediction of the local visual area [15, 16]
or the entire image [17, 18, 36]. The constraint
introduces an additional regularization component
along with image classification loss. By contrast,
the cross-modal alignment approach explicitly brings
visual and semantic features closer to each other
within a shared space. This is primarily achieved
through the use of similarity loss, such as between
visual and semantic features [19] or the covariance
matrices of the features [20]. These techniques guide
the model to effectively filter the noise in visual
feature space [21, 22].

3 Method

3.1 Overview

To fully utilize cross-modal information in the
training phase and improve the learning of long-tailed
images, we constructed an alignment–inference–fusion
learning framework in CMLTNet, as shown in Fig. 3.

In this process, first, in the visual representation
enhancement module, cross-modal alignment is used
to bring the visual feature distribution close to the
semantic distribution, to improve the learning of intra-
class representation as modal heterogeneity limits the
effects of alignment. In the cross-modal representation
inference module, semantic information is used as a
constraint to guide the mapping of visual features
to semantic space, to promote effective learning of
semantically meaningful visual–semantic knowledge,
and reduce the inter-class confusion caused by visual
noise. Finally, in the cross-modal information fusion
module, through the fusion of the above features
learned from different channels, CMLTNet obtains
debiased information and thus improves the overall
effect of long-tailed image classification.

3.2 Visual representation enhancement module

As mentioned in Section 3.1, the main objective of the
visual representation enhancement module is to make
the extracted visual features closer to the semantic
features at the distribution level during classification.
For input images V = {vi|i = 1, 2, · · · , N} and
the corresponding description words S = {si|i =
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Fig. 3 Schematic diagram of CMLTNet. Description words S are introduced for images V in the training phase as cross-modal semantic
features Fs to help (i) alignment learning from visual features Fv to visually aligned features Fva in a shared space; (ii) better transfer visual
features Fv to semantic space and infer semantic embeddings Es through words S. Finally the learned features Fva and embeddings are fused
as augmented features Faug. Through the training of the CMLTNet framework, the bias information in learning long-tailed images is alleviated,
thereby improving the image classification ability in the test.

1, 2, · · · , N}, the model first extracts visual features
Fv = ρv(V) and semantic features Fs = ρs(S)
through the visual encoder ρv(.) and semantic encoder
ρs(.), respectively. The model then attempts to find
a shared space that minimizes the distance of the
distribution of Fv and Fs.

min{Distance(αv(Fv), αs(Fs))} (1)
where Distance(.) denotes measurement of distance,
such as Lp Norm; αv and αs are shared space mappings
for visual and semantic features, respectively. In
CMLTNet, one-layer linear projection is followed by
ReLU activation.

In CMLTNet, the aligned features are mapped
by shared space Fva = αv(Fv) and Fsa = αs(Fs)
achieving the goal of Eq. (1) through KL-divergence,
by making visual features closer to semantic features
in shared space.
Lexp = KLD(Softmax(Fva),Softmax(Fsa)) (2)

In the above process, the visual and semantic
features are mapped into a shared space to generate
alignment features Fva = αv(Fv) and Fsa = αs(Fs).
By imposing classification constraints, the features of
the two modalities are further optimized to improve
classification, thereby forming implicit constraints as
Eq. (3):

Limp = Lcls(f(Fva),C) + Lcls(f(Fsa),C) (3)

where Lcls is the classification loss, which can be
cross-entropy in the single-label classification task
or binary cross-entropy in multi-label classification;
C denotes the labels of the samples; and f(.) is the
linear classifier for both visual and semantic features.

3.3 Cross-modal representation learning
module

Visual representation is enhanced by alignment;
however, modal heterogeneity limits the effects of the
alignment. Thus, visual noise and error propagation
remain serious. Therefore, we designed a cross-modal
representation learning method to infer from the
visual modality, semantic modality features.

To extract semantically meaningful visual
information, a cross-modal transfer mapping is
required to convert visual features into visual-
semantic features, that is, Fv→s = Trans(Fv) which
closely corresponds to the description words S. The
target of cross-modal inference is

min{Error(g(Fv→s),S)} (4)
where Error(.) denotes the error in word predictions,
and g(.) is the predicted mapping of words. In
CMLTNet, we applied two blocks of linear projections
followed by LeakyReLU activation as the modal-
transfer mapping Trans(.); g(.) denotes the one-layer
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linear projection.
To achieve the goal of Eq. (4), semantic words S

are used as targets for word predictions, and semantic
features Fs are also used to improve the cross-modal
transfer mapping:
Ltran = BCE(g(Fv→s),S) + βt·MSE(Fv→s,Fs) (5)

where BCE(., .) is the binary cross-entropy loss;
MSE(., .) is the mean squared error loss; and βt is the
coefficient of transfer loss with the range specified in
Section 4.2.2.

The semantic predictions Pv→s = g(Fv→s) contain
the word probabilities for given images, whereby this
information is used to enhance the representations
learned in visual space. CMLTNet encodes Pv→s as
embeddings:

Es = θ(Emb(Topk(Pv→s))) (6)
where Topk(.) is the operation to choose the
top-k predicted words and Emb(.) is the word-
embedding layer; θ(.) denotes the word-embedding
fusion operation, which is expressed as an average
of embeddings or linear fusion of embeddings. The
effects of different θ(.) are shown in Section 4.4.

The process of learning embeddings is constrained
by the class prediction loss:

Lembed = Lcls(fe(Es), C) (7)
where fe(.) is the class mapping of semantic
embeddings.

Therefore, the overall cross-modal inference loss is
Linfer = Ltran + Lembed (8)

3.4 Cross-modal information fusion module

Representations of visual features are strengthened
by alignment; however, there is still an ill-posed
gap between the head and tail classes. After cross-
modal inference, visual noise is filtered, with the
loss of information resulting in a drop in performance.
Therefore, we propose fusing the two parts of the features
to combine the advantages of the two modalities.

Faug = Fusion(φ(Fva), φ(Es)) (9)
where Fusion(., .) is a feature-level operation, such as
feature concatenation, add, min, and max operations,
and φ(.) is a linear layer followed by LeakyReLU
activation.

A classification constraint is applied to the fusion:
Lfusion = Lcls(ff(Faug), C) (10)

where Lcls is the CE loss for single-label classification
or BCE loss for multi-label classification, and ff(.) is
a feature fused to the class mapping.

3.5 Training strategy

3.5.1 Multi-stage training
To improve the training efficiency, the training of
CMLTNet can be divided into the following stages
according to the aforementioned process:
• Stage 1: Training the visual encoder ρv(.),

semantic encoder ρs(.), and shared space mapping
net in visual and semantic modality, i.e.,
αv(.) and αs(.). During training, the explicit
alignment constraintLexp is combined with implicit
classification constraint Limp, using an adjustable
factor γimp on Limp. Thus, the loss function of
training Stage 1 is Ls1 = Lexp + γimp · Limp.

• Stage 2: Freezing the parameters of the networks
trained in Stage 1, and training the transfer
network Trans(.), semantic prediction mapping
g(.), and embedding Emb(.). The above process
is constrained by the loss of Stage 2: Ls2 = Linfer.

• Stage 3: Freezing the networks of Stage 1 and
Stage 2, in addition to training the linear net φ(.)
and class mapping ff(.) during fusion under the
constraints of Ls3 = Lfusion.

3.5.2 One-stage training
CMLTNet can also be used end-to-end in one stage
by combining the above losses; however, in this case,
the parameter adjustment needs to be fine-tuned, as
discussed further in Section 4.2.2:
L = γimp · Limp + Lexp + γt · Linfer + Lfusion (11)

where γimp and γt are the weight factors of losses.

4 Experiments

4.1 Datasets

Experiments were conducted on two cross-modal
long-tailed datasets, as shown in Table 1, where the
imbalance ratio (IR) [3, 4] measures the degree of
imbalance in datasets, that is, IR = max nc/minnc,
where nc means the number of samples in the class c,
and the IR illustrates the ratio of the sample amount
in the most and least sampled classes.

NUS-WIDE [37]: a multi-label classification
dataset containing images in 81 classes. Each image

Table 1 Statistical details of NUS-WIDE and VireoFood-172 with
# indicating the categories

Dataset #Classes #Words IR (train) IR (test)

NUS-WIDE 81 1000 1083.62 1465.70

VireoFood-172 172 353 5.57 5.50
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corresponds to several texts, and the total number of
word classes is 1000. Following previous studies [37–
39], we split the training and test sets and removed
samples with missing labels or text. Finally, 203,598
samples remained, including 121,962 training samples
and 81,636 testing samples, with an IR of 1083.62 in
the training set and 1465.70 in the test set.

VireoFood-172 [17]: a single-label classification
dataset with a total of 99,225 images corresponding
to 172 categories. Each image corresponds to multiple
texts, and the total number of classes is 353.
Following a procedure similar to that of NUS-WIDE,
there were 66,071 samples in the training set and
33,154 samples in the test set. The IRs of the training
and testing sets were 5.57 and 5.50, respectively.

4.2 Experimental settings

4.2.1 Evaluation protocol
Following previous studies on multi-label long-tailed
classification [40, 41], the mean average precision
(mAP) was adapted to the multi-label NUS-WIDE
dataset to evaluate the performance of the algorithms.
We report the performances in three disjoint class
subsets, divided by the frequency of occurrences in
the training set, as in Ref. [42]: head classes (classes
each with over 5000 occurrences), medium classes
(classes each with 2000–5000 occurrences), and tail
classes (classes each with less than 2000 occurrences).

The accuracy score was used to evaluate the
classification performance of the algorithms on
the single-label dataset VireoFood-172, as in
previous studies [9, 42]. As mentioned in the
protocol settings of NUS-WIDE, we also divided
the classes of VireoFood-172 into three disjoint
subsets: head classes (classes each with over 500
occurrences), medium classes (classes each with 300–
500 occurrences), and tail classes (classes under 300
occurrences).
4.2.2 Implementation details
For general hyperparameters, the settings were as
follows: batch size was fixed at 64; learning rate
decay occurred at intervals of four epochs; and each
model underwent three decay steps, each reducing
the learning rate by 0.1, followed by an additional
training epoch. The Adam optimizer was employed
with weight decay options of [1× 10−3, 5× 10−4, 2×
10−4, 1× 10−4]. The learning rate was selected to be
within the range of 5× 10−5 to 5× 10−3.

For the hyperparameters used in comparative
experiments of long-tailed learning methods, we
selected the tunable focusing parameter γ in Focal
[26] from [0.1, 0.2, 0.5, 1.0, 2.0, 5.0], the independent
constant in LDAM-DRW [4] from [0.1, 0.2, 0.5, 1.0,
2.0], and the hyperparameter β in class-balanced (CB)
[3] resample, reweight, and LDAM-DRW [4] from [0.9,
0.99, 0.999, 0.9999].

For the hyperparameters used in comparative
experiments of cross-modal learning methods, the
weights of alignment loss were selected from [0.1, 0.2,
0.5, 1.0, 1.5, 2.0] in ATNet [19], and the weights of
semantic loss were selected from [0.5, 1.0, 1.5, 2.0] in
ARCH-D [17], CMRR [15], and CMFL [18]. We fine-
tuned CLIP [34] on the aforementioned datasets until
convergence was reached by loading the pretrained
model with a learning rate of 1× 10−5 to 1× 10−4.
The dimension of the semantic latent space was set
to 2048.

As for the parameters in CMLTNet and its variants,
the coefficient of losses βalign, βtransfer were selected
from [0.1, 0.2, 0.5, 1.0, 1.5, 2.0]. For one-stage
training, the weights of βt, γimp and γt losses were
chosen from [0.1, 0.5, 1.0, 2.0], and the dimension of
semantic latent space was 300.
4.3 Performance comparison

Comparative experiments were conducted to verify
the effectiveness of the proposed CMLTNet. Visual
backbone methods included pretrained basic networks
ResNet-18, ResNet-50 [43], VGG [44], two improved
networks WRN [45] and WISeR [46] based on ResNet-
50, and the recent Transformer-based backbone ViT
[47]. Long-tailed learning methods included focal
loss [26], CB [3] resample and reweight, and LDAM-
DRW [4]. Cross-modal learning methods included
our in-house implementation of constraint-based
methods ARCH-D [17], CMRR [15], CMFL [18], and
alignment-based methods ATNet [19]. The methods
above use the pretrained ResNet-50 as the backbone.
In addition, the CLIP [34] model pretrained on
400 million image–text pairs was included in the
comparisons. From the results in Table 2, we make
the following observations:
• The performance of CMLTNet is comparable

or better among the comparison methods.
Compared with the benchmark long-tailed
learning and cross-modal learning methods,
CMLTNet simultaneously improves the per-
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Table 2 Comparative results on multi-label NUS-WIDE, with mAP and accuracy scores reported for single-label VireoFood-172. In the table,
All, Head, Med, and Tail represent the results on the entire, head, medium, and tail classes, respectively

Method Model
NUS-WIDE VireoFood-172

All Head Med Tail All Head Med Tail

Visual backbone

ResNet-18 0.421 0.681 0.508 0.332 0.782 0.784 0.785 0.767
ResNet-50 0.444 0.692 0.536 0.357 0.817 0.817 0.824 0.798

VGG 0.436 0.694 0.531 0.346 0.811 0.805 0.820 0.801
WRN 0.451 0.711 0.546 0.361 0.825 0.817 0.830 0.823

WISeR 0.451 0.711 0.544 0.362 0.828 0.832 0.829 0.819
ViT 0.455 0.709 0.544 0.367 0.836 0.829 0.846 0.830

Long-tailed learning

Focal (ResNet-50) 0.452 0.714 0.569 0.356 0.821 0.821 0.827 0.801
CB Resample (ResNet-50) 0.467 0.691 0.518 0.397 0.812 0.802 0.821 0.811
CB Reweight (ResNet-50) 0.459 0.695 0.534 0.379 0.820 0.817 0.826 0.810
LDAM-DRW (ResNet-50) 0.470 0.701 0.548 0.392 0.833 0.826 0.840 0.825

Cross-modal learning

ATNet (ResNet-50) 0.458 0.693 0.531 0.380 0.829 0.824 0.837 0.814
ARCH-D (ResNet-50) 0.450 0.695 0.532 0.366 0.825 0.824 0.833 0.804
CMRR (ResNet-50) 0.450 0.686 0.508 0.375 0.819 0.815 0.824 0.812
CMFL (ResNet-50) 0.478 0.706 0.564 0.398 0.831 0.829 0.833 0.816
CLIP (ResNet-50) 0.490 0.717 0.567 0.412 0.834 0.827 0.842 0.830

CMLTNet (ResNet-18) 0.478 0.702 0.539 0.405 0.792 0.785 0.800 0.781
CMLTNet (ResNet-50) 0.486 0.707 0.548 0.413 0.833 0.825 0.842 0.823

CMLTNet (ViT) 0.494 0.715 0.557 0.420 0.843 0.837 0.850 0.832

formance of head, medium, and tail classes under
the same visual backbone.

• CMLTNet achieves more stable performance
gains across datasets in different domains
compared with other methods. Note that
on NUS-WIDE, CMLTNet using ResNet-18
outperforms most cross-modal learning methods
using ResNet-50, which indicates that CMLTNet
can effectively combine valuable information in
different modalities.

• There is an obvious head-to-tail deviation in
the visual backbones, including the conventional
convolutional and transform-based networks.
The improvements introduced by the enhanced
backbones on the tail classes are limited to
NUS-WIDE with higher IR. The performance
of medium classes is higher than the head on
VireoFood-172 because there are more confusing
classes in the head.

• To enhance performance, long-tailed learning
methods prioritize head class optimization to
prevent inadvertent weakening of the head while
simultaneously improving the tail. CB resample
on VireoFood-172 is such an example, in that, as
the tail is enhanced by 1.2%, the medium and
head are weakened by 0.3% and 1.8%, respectively,
resulting in an overall reduction of 0.6%. Focal

loss encounters the problem of an increased head-
to-tail gap on NUS-WIDE.

• Cross-modal learning methods generally improve
the tail predictions, with the effect varying for
different datasets. For example, since deception
words form a diverse inner class on NUS-WIDE,
the effectiveness of align-based ATNet is limited.
On VireoFood-172, less improvement is observed
on the tail with the cross-modal constraint-based
methods ARCH-D and CMRR.

• CLIP demonstrates performance on par with
CMLTNet, outperforming other cross-modal and
long-tailed learning methods. This highlights the
effectiveness of CLIP’s extensive pre-training
and fine-tuning. Moreover, considering CLIP’s
substantial data requirements, CMLTNet results
indicate that addressing modal heterogeneity
efficiently enhances data utilization.

4.4 Ablation study

To analyze the mechanisms behind the performance
improvement of CMLTNet, we gradually added
modules to the base model in the ablation studies,
as shown in Table 3. The visual representation
learning module incorporated feature alignment (+A),
whereas the cross-modal representation inference
module included cross-modal inference (+I) and
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Table 3 Ablation study on CMLTNet using ResNet-50 as the base model. In the table, +A denotes cross-modal alignment; +I denotes
cross-modal inference comprising two word-embedding combination methods, mean of features (M) and linear projection (L); and F denotes
feature fusion

Model
NUS-WIDE VireoFood-172

All Head Med Tail All Head Med Tail

Base 0.444 0.692 0.536 0.357 0.817 0.817 0.824 0.798

+A 0.466 0.698 0.540 0.388 0.821 0.821 0.834 0.822

+I(M) 0.355 0.594 0.411 0.279 0.780 0.790 0.797 0.708

+I(L) 0.401 0.628 0.446 0.332 0.801 0.802 0.812 0.771

+A+I(M)+F 0.473 0.703 0.543 0.397 0.829 0.823 0.837 0.816

+A+I(L)+F 0.486 0.707 0.548 0.413 0.833 0.825 0.842 0.823

experiments in two modes: embedding averaging
(+I(M)) and linear mapping fusion of embeddings
(+I(L)). Finally, feature fusion (+F) was performed
by combining +A and +I.
• Following alignment (+A), the model demon-

strates better performance across all classes
in comparison to the base model. Notably,
the increase in performance for the tail class
surpasses that of both the head and middle
classes. For instance, in the case of NUS-WIDE,
the improvements in the head, middle, and
tail classes are 4%, 0.8%, and 8%, respectively.
This illustrates that the incorporation of cross-
modal information enhances the information
augmentation for the tail class, effectively
mitigating the issue of class imbalance.

• Regarding cross-modal inference (+I), this
procedure encompasses the filtration of visual
noise during the inference phase. While this
diminishes the gap between the head and tail
classes, it also carries the potential risk of
discarding valuable information that may be
relevant for classification. As a result, the direct
prediction accuracy for cross-modal inference
remains relatively modest, irrespective of whether
mean +I(M) or linear projection +I(L) are
employed to construct embeddings. Nevertheless,
the significant semantic insights acquired can
effectively complement the aligned features.

• The supplementary effects are evident when
considering the impact of cross-modal fusion
(+F). In comparison to aligned predictions, the
performances of the head, middle, and tail classes
experience additional enhancements.

4.5 In-depth analysis of fusion strategy
In this section, the fusion strategy employed in
CMLTNet is discussed. Table 4 lists the performance

outcomes resulting from the various fusion strategies
used to augment features. Notably, we found
that employing the element-wise maximum (Max)
method yields the highest overall performance.
Employing element-wise feature addition (Add),
feature concatenation (Con), and maximum (Max)
or minimum (Min), the predictions for the head,
middle, and tail classes are consistently enhanced by
CMLTNet. This suggests that CMLTNet effectively
extracts valuable information from both visual
alignment and cross-modal inferences.

4.6 Case study

4.6.1 Representation learning in feature spaces
In the above analysis, each module of CMLTNet
played a positive role in alleviating the imbalance
problem. In this section, we further delve into
the feature space to understand how it improves
representation learning, randomly choosing two
confusing head and tail classes from VireoFood-172
(with an imbalance ratio of 4.8) and using t-SNE to
observe the distributions in feature space.

The results are shown in Fig. 4. The features are
heavily mixed in visual space because of model bias
during optimization. However, in semantic space, the
feature dimension is relatively low, so distinguishing
the head and tail classes is easier, and the distribution

Table 4 Performance of CMLTNet using different fusion strategies.
Align, Inference, and Cross-modal fusion represent the performance
using aligned visual features, semantic embeddings, and fused
augmented features, respectively

Class Align Inference
Cross-modal fusion

Add Con Max Min

All 0.466 0.401 0.482 0.483 0.486 0.484

Head 0.698 0.628 0.709 0.707 0.707 0.707

Med 0.540 0.446 0.550 0.549 0.548 0.549

Tail 0.388 0.332 0.407 0.410 0.413 0.411
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Fig. 4 t-SNE visualization of the feature distribution in the latent
embedding spaces, where blue crosses represent head class samples,
and red dots represent tail class samples.

of features is the aggregation of multiple clusters with
distinct semantic features.

Through the alignment operation of CMLTNet,
we found that the features of both the head and
tail classes in semantic space tend to form small
clusters, making mixed head and tail features more
distinguishable. By contrast, after semantic inference,
the head and tail are gathered in their respective
spaces, and there is a clear demarcation between the
classes. Finally, in fusion space, the features combine
the characteristics of the above two spaces, using
intra-class aggregation and inter-class separation
simultaneously so that both the head and tail achieve
better representation learning.
4.6.2 Visual attention of different features
Previous experiments demonstrated that CMLTNet
improves representation learning. In this section,
we further analyze whether CMLTNet learns
semantically meaningful information from features in
the head, middle, and tail classes using GradCAM
[48] visualization, as shown in Fig. 5.

Fig. 5 Visualization of model attention. Visual, cross-modal, and
fused features represent model attention in different feature spaces.

In the experiments, it was observed that visual
models are easily disrupted by noise, particularly
when dealing with images from underrepresented
categories with limited information diversity. In
terms of visual features, in the cases (c), (e), and
(f), attention focuses on the background of the
images. After cross-modal inference, the attention
of the model is more focused on the visual modality,
significantly reducing the issue of background focus in
the cases (c) and (e). However, as demonstrated in the
cases (a) and (d), there is also the risk of allocating
more attention to the background. Therefore, in
cross-modal fusion, CMLTNet combines the attention
of both modalities, expanding the receptive field,
thereby reducing errors caused by visual and cross-
modal inference noise. Furthermore, it is observed
that the visual modality pays less attention to rare
concepts in tail categories, such as rainbow and
whale, whereas the semantic modality learns them
better. This explains the effectiveness of CMLTNet
in mitigating long-tailed problems.

5 Conclusions

This study introduced CMLTNet, which enhances
long-tailed classification based on cross-modal
privilege information. Through heterogeneous fea-
ture alignment, cross-modal transfer, and fusion
enhancement representation learning, CMLTNet
strengthens the focus on minority classes, improves
overall prediction ability, and provides an “align-
ment–inference–fusion” framework for enhancing
classification using cross-modal information.

This study is a preliminary step in cross-modal long-
tailed classification. In the future, we will consider
enriching the diversity at the sample level using
methods such as contrastive learning [49] and by
introducing causal inference [33, 50] into feature
learning to improve the extraction of key information
and further enhance the learning of tail features.

Acknowledgements

This work was supported in part by the National
Natural Science Foundation of China (62006141),
the National Key R&D Program of China
(2021YFC3300203), the Overseas Innovation Team
Project of the “20 Regulations for New Universities”
Funding Program of Jinan (2021GXRC073), and



990 X. Li, Y. Zheng, H. Ma, et al.

the Excellent Youth Scholars Program of Shandong
Province (2022HWYQ-048).

Declaration of competing interest

The authors have no competing interests to declare
that are relevant to the content of this article.

References

[1] Zhou, B.; Cui, Q.; Wei, X. S.; Chen, Z. M. BBN:
Bilateral-branch network with cumulative learning
for long-tailed visual recognition. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 9716–9725, 2020.

[2] Kang, B.; Xie, S.; Rohrbach, M.; Yan, Z.; Gordo,
A.; Feng, J.; Kalantidis, Y. Decoupling representation
and classifier for long-tailed recognition. In:
Proceedings of the International Conference on
Learning Representations, 2019.

[3] Cui, Y.; Jia, M.; Lin, T. Y.; Song, Y.; Belongie,
S. Class-balanced loss based on effective number of
samples. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 9268–
9277, 2019.

[4] Cao, K.; Wei, C.; Gaidon, A.; Arechiga, N.; Ma, T.
Learning imbalanced datasets with label-distribution-
aware margin loss. In: Proceedings of the Advances
in Neural Information Processing Systems, 1567–1578,
2019.

[5] Cui, J.; Zhong, Z.; Liu, S.; Yu, B.; Jia, J. Parametric
contrastive learning. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 715–724,
2021.

[6] Chou, H. P.; Chang, S. C.; Pan, J. Y.; Wei, W.; Juan,
D. C. Remix: Rebalanced mixup. In: Computer Vision –
ECCV 2020 Workshops. Lecture Notes in Computer
Science, Vol. 12540. Bartoli, A.; Fusiello, A. Eds.
Springer Cham, 95–110, 2021.

[7] Zhang, Y.; Wei, X. S.; Zhou, B.; Wu, J. Bag of tricks for
long-tailed visual recognition with deep convolutional
neural networks. Proceedings of the AAAI Conference
on Artificial Intelligence Vol. 35, No. 4, 3447–3455,
2021.

[8] Park, S.; Hong, Y.; Heo, B.; Yun, S.; Choi, J. Y.
The majority can help the minority: Context-rich
minority oversampling for long-tailed classification.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 6877–6886,
2022.

[9] Li, X.; Ma, H.; Meng, L.; Meng, X. Comparative
study of adversarial training methods for long-tailed
classification. In: Proceedings of the 1st International
Workshop on Adversarial Learning for Multimedia, 1–7,
2021.

[10] Kim, J.; Jeong, J.; Shin, J. M2m: Imbalanced
classification via major-to-minor translation. In:
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 13893–
13902, 2020.

[11] Liu, J.; Sun, Y.; Han, C.; Dou, Z.; Li, W. Deep
representation learning on long-tailed data: A learnable
embedding augmentation perspective. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2970–2979, 2020.

[12] Ma, H.; Qi, Z.; Dong, X.; Li, X.; Zheng, Y.; Meng,
X.; Meng, L. Cross-modal content inference and
feature enrichment for cold-start recommendation. In:
Proceedings of the International Joint Conference on
Neural Networks, 1–8, 2023.

[13] Vapnik, V.; Vashist, A. A new learning paradigm:
Learning using privileged information. Neural Networks
Vol. 22, Nos. 5–6, 544–557, 2009.

[14] Vapnik, V.; Izmailov, R. Learning using privileged
information: Similarity control and knowledge transfer.
Journal of Machine Learning Research Vol. 16, No. 61,
2023–2049, 2015.

[15] Chen, J. J.; Ngo, C. W.; Chua, T. S. Cross-modal recipe
retrieval with rich food attributes. In: Proceedings of
the 25th ACM International Conference on Multimedia,
1771–1779, 2017.

[16] Min, W.; Liu, L.; Luo, Z.; Jiang, S. Ingredient-guided
cascaded multi-attention network for food recognition.
In: Proceedings of the 27th ACM International
Conference on Multimedia, 1331–1339, 2019.

[17] Chen, J.; Ngo, C. W. Deep-based ingredient recognition
for cooking recipe retrieval. In: Proceedings of the 24th
ACM International Conference on Multimedia, 32–41,
2016.

[18] George, A.; Marcel, S. Cross modal focal loss for
RGBD face anti-spoofing. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7882–7891, 2021.

[19] Meng, L.; Chen, L.; Yang, X.; Tao, D.; Zhang, H.; Miao,
C.; Chua, T. S. Learning using privileged information
for food recognition. In: Proceedings of the 27th
ACM International Conference on Multimedia, 557–
565, 2019.

[20] Sun, B.; Saenko, K. Deep CORAL: Correlation



Cross-modal learning using privileged information for long-tailed image classification 991

alignment for deep domain adaptation. In: Proceedings
of the European Conference on Computer Vision, 443–
450, 2016.

[21] Li, S.; Xie, B.; Wu, J.; Zhao, Y.; Liu, C. H.;
Ding, Z. Simultaneous semantic alignment network for
heterogeneous domain adaptation. In: Proceedings of
the 28th ACM International Conference on Multimedia,
3866–3874, 2020.

[22] Li, X.; Xu, Z.; Wei, K.; Deng, C. Generalized zero-shot
learning via disentangled representation. Proceedings
of the AAAI Conference on Artificial Intelligence Vol.
35, No. 3, 1966–1974, 2021.

[23] Gao, J.; Chen, J.; Fu, H.; Jiang, Y. G. Dynamic mixup
for multi-label long-tailed food ingredient recognition.
IEEE Transactions on Multimedia Vol. 25, 4764–4773,
2023.

[24] Mahajan, D.; Girshick, R.; Ramanathan, V.; He, K.;
Paluri, M.; Li, Y.; Bharambe, A.; van der Maaten, L.
Exploring the limits of weakly supervised pretraining.
In: Proceedings of the European Conference on
Computer Vision, 181–196, 2018.

[25] Ren, J.; Yu, C.; Sheng, S.; Ma, X.; Zhao, H.; Yi, S.;
Li, H. Balanced meta-softmax for long-tailed visual
recognition. In: Proceedings of the 34th International
Conference on Neural Information Processing Systems,
Article No. 351, 2020.

[26] Lin, T. Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P.
Focal loss for dense object detection. In: Proceedings
of the IEEE International Conference on Computer
Vision, 2980–2988, 2017.

[27] Wang, Y.; Gan, W.; Yang, J.; Wu, W.; Yan, J. Dynamic
curriculum learning for imbalanced data classification.
In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 5017–5026, 2019.

[28] Chu, P.; Bian, X.; Liu, S.; Ling, H. Feature space
augmentation for long-tailed data. In: Proceedings of
the 17th European Conference on Computer Vision,
694–710, 2020.

[29] Hong, Y.; Zhang, J.; Sun, Z.; Yan, K. SAFA: Sample-
adaptive feature augmentation for long-tailed image
classification. In: Proceedings of the 17th European
Conference on Computer Vision, 587–603, 2022.

[30] Kang, B.; Li, Y.; Xie, S.; Yuan, Z.; Feng, J. Exploring
balanced feature spaces for representation learning.
In: Proceedings of the International Conference on
Learning Representations, 2021.

[31] Li, T.; Cao, P.; Yuan, Y.; Fan, L.; Yang, Y.; Feris, R.;
Indyk, P.; Katabi, D. Targeted supervised contrastive
learning for long-tailed recognition. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 6918–6928, 2022.
[32] Xiang, L.; Ding, G.; Han, J. Learning from multiple

experts: Self-paced knowledge distillation for long-
tailed classification. In: Computer Vision – ECCV
2020. Lecture Notes in Computer Science, Vol. 12350.
Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds.
Springer Cham, 247–263, 2020.

[33] Tang, K.; Huang, J.; Zhang, H. Long-tailed
classification by keeping the good and removing the bad
momentum causal effect. In: Proceedings of the 34th
Conference on Neural Information Processing Systems,
1513–1524, 2020.

[34] Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.;
Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin,
P.; Clark, J.; et al. Learning transferable visual models
from natural language supervision. In: Proceedings of
the 38th International Conference on Machine Learning,
8748–8763, 2021.

[35] Meng, L.; Feng, F.; He, X.; Gao, X.; Chua, T. S.
Heterogeneous fusion of semantic and collaborative
information for visually-aware food recommendation.
In: Proceedings of the 28th ACM International
Conference on Multimedia, 3460–3468, 2020.

[36] Jiang, S.; Min, W.; Liu, L.; Luo, Z. Multi-scale multi-
view deep feature aggregation for food recognition.
IEEE Transactions on Image Processing Vol. 29, 265–
276, 2020.

[37] Chua, T. S.; Tang, J.; Hong, R.; Li, H.; Luo, Z.; Zheng,
Y. NUS-WIDE: A real-world web image database from
National University of Singapore. In: Proceedings of
the ACM International Conference on Image and Video
Retrieval, Article No. 48, 2009.

[38] Tang, J.; Shu, X.; Li, Z.; Qi, G. J.; Wang, J.
Generalized deep transfer networks for knowledge
propagation in heterogeneous domains. ACM Trans-
actions on Multimedia Computing, Communications,
and Applications Vol. 12, No. 4s, Article No. 68, 2016.

[39] Tang, J.; Shu, X.; Qi, G. J.; Li, Z.; Wang, M.; Yan,
S.; Jain, R. Tri-clustered tensor completion for social-
aware image tag refinement. IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol. 39, No.
8, 1662–1674, 2017.

[40] Wu, T.; Huang, Q.; Liu, Z.; Wang, Y.; Lin, D.
Distribution-balanced loss for multi-label classification
in long-tailed datasets. In: Proceedings of the 16th
European Conference on Computer Vision, 162–178,
2020.

[41] Guo, H.; Wang, S. Long-tailed multi-label visual
recognition by collaborative training on uniform
and re-balanced samplings. In: Proceedings of the



992 X. Li, Y. Zheng, H. Ma, et al.

IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 15089–15098, 2021.

[42] Liu, Z.; Miao, Z.; Zhan, X.; Wang, J.; Gong, B.; Yu,
S. X. Large-scale long-tailed recognition in an open
world. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2537–
2546, 2019.

[43] He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual
learning for image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 770–778, 2016.

[44] Simonyan, K.; Zisserman A. Very deep convolutional
networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[45] Zagoruyko, S.; Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2017.

[46] Martinel, N.; Foresti, G. L.; Micheloni, C. Wide-slice
residual networks for food recognition. In: Proceedings
of the IEEE Winter Conference on Applications of
Computer Vision, 567–576, 2018.

[47] Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer,
M.; Heigold, G.; Gelly, S.; et al. An image is worth
16x16 words: Transformers for image recognition at
scale. In: Proceedings of the International Conference
on Learning Representations, 2021.

[48] Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; Batra, D. Grad-CAM: Visual explanations
from deep networks via gradient-based localization. In:
Proceedings of the IEEE International Conference on
Computer Vision, 618–626, 2017.

[49] Chen, Z.; Qi, Z.; Cao, X.; Li, X.; Meng, X.;
Meng, L. Class-level structural relation modelling and
smoothing for visual representation learning. arXiv
preprint arXiv:2308.04142, 2023.

[50] Wang, Y.; Li, X.; Qi, Z.; Li, J.; Li, X.; Meng, X.; Meng,
L. Meta-causal feature learning for out-of-distribution
generalization. In: Computer Vision – ECCV 2022
Workshops. Lecture Notes in Computer Science, Vol.
13806. Karlinsky, L.; Michaeli, T.; Nishino, K. Eds.
Springer Cham, 530–545, 2023.

Xiangxian Li is a Ph.D. student
supervised by Prof. Xiangxu Meng
and Prof. Lei Meng in the School of
Software, Shandong University, China.
His research interests include long-tailed
classification and cross-modal learning.
He received an ACM MM Student Travel
Grant in 2021.

Lei Meng is professor with Shandong
University, China. His research interests
cover multimedia computing and
its application in smart family and
social governance. He has published a
monograph of social media computing
and more than 60 academic papers in
multimedia and artificial intelligence

journals and conferences. His research lab, i.e., the Lab of
Multimedia Mining, Reasoning, and Application (MMRC),
has been selected into the “20 New Universities” Innovation
Team Program of Jinan City. He presided several national
and provincial projects, including the National Key R&D
Program of China and the NSFC Young Scholar Project.
He is an associate editor of Applied Soft Computing, the
executive member of CCF Multimedia Committee, and the
Chairman of CCF YOCSEF Jinan.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related works
	Long-tailed image classification
	Cross-modal learning for image classi-fication

	Method
	Overview
	Visual representation enhancement module
	Cross-modal representation learning module
	Cross-modal information fusion module
	Training strategy
	Multi-stage training
	One-stage training


	Experiments
	Datasets
	Experimental settings
	Evaluation protocol
	Implementation details

	Performance comparison
	Ablation study
	In-depth analysis of fusion strategy
	Case study
	Representation learning in feature spaces
	Visual attention of different features


	Conclusions

