q

Check for
updates

Unifying Visual and Semantic Feature
Spaces with Diffusion Models
for Enhanced Cross-Modal Alignment

Yuze Zheng®, Zixuan Li®, Xiangxian Li(®, Jinxing Liu®, Yuqing Wang®,
Xiangxu Meng®, and Lei Meng(®)

School of Software, Shandong University, Jinan, China
Imeng@sdu.edu.cn

Abstract. Image classification models often demonstrate unstable per-
formance in real-world applications due to variations in image informa-
tion, driven by differing visual perspectives of subject objects and lighting
discrepancies. To mitigate these challenges, existing studies commonly
incorporate additional modal information matching the visual data to
regularize the model’s learning process, enabling the extraction of high-
quality visual features from complex image regions. Specifically, in the
realm of multimodal learning, cross-modal alignment is recognized as an
effective strategy, harmonizing different modal information by learning a
domain-consistent latent feature space for visual and semantic features.
However, this approach may face limitations due to the heterogeneity
between multimodal information, such as differences in feature distri-
bution and structure. To address this issue, we introduce a Multimodal
Alignment and Reconstruction Network (MARNet), designed to enhance
the model’s resistance to visual noise. Importantly, MARNet includes
a cross-modal diffusion reconstruction module for smoothly and stably
blending information across different domains. Experiments conducted
on two benchmark datasets, Vireo-Food172 and Ingredient-101, demon-
strate that MARNet effectively improves the quality of image informa-
tion extracted by the model. It is a plug-and-play framework that can be
rapidly integrated into various image classification frameworks, boosting
model performance.

Keywords: Image classification + Cross-modal alignment - Diffusion
model

1 Introduction

Visual classification is a critical task in the field of computer vision [3, 15,28, 35].
However, the quality of visual images is susceptible to various factors, including
but not limited to, interference from non-main elements and changes in lighting
angles, leading to inconsistent performance in image classification [18,33,34].
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With the rapid development of social media platforms, a vast amount of tex-
tual information related to visual images has emerged. These pieces of informa-
tion present a complex relationship of mutual dependence and complementarity,
which can compensate for the shortcomings of single-modal information. How-
ever, the potential complementarity between images and texts is often limited
due to the fundamental differences between these two forms of information, thus
affecting the effectiveness of multimodal learning [24,27]. Therefore, effectively
integrating and utilizing cross-modal data information becomes key to enhancing
the performance of multimodal learning.

In recent years, researchers in multimodal learning have commonly adopted
cross-modal representation alignment strategies to reduce the heterogeneity
between different modal information. These strategies can be broadly divided
into two categories: those based on distance metrics [12,13,16] and those based
on contrastive learning [11,32,36]. Distance-based alignment methods mainly
constrain the spatial distance between different sources of information, such as
category center distance or decision space distance, to effectively mitigate the
problem of distance differences between modal information in the information
space. In contrast, contrastive learning-based alignment methods divide multi-
modal information into positive and negative samples and enhance the similar-
ity between positive samples while separating them from negative samples by
comparing sample similarities. This approach strengthens the distinction and
interactivity of information in the representation space. However, both methods
tend to focus on the distance between representations while aligning cross-modal
representations as much as possible, neglecting the significant distribution dif-
ferences between different modal representations, which is a challenge that needs
to be addressed in multimodal learning.

To deeply address the challenges in cross-modal representation alignment,
this study first thoroughly analyzes the common algorithmic frameworks within
the two categories of alignment methods, assessing their strengths and limita-
tions. Based on this analysis, we introduce an innovative multimodal alignment
and reconstruction network, named MARNet. As illustrated in Fig. 1, MARNet,
through a contrastive learning-based alignment strategy, effectively resolves the
issue of representation confusion in the visual space while enhancing the sep-
aration of samples within the same category space. Unlike previous alignment
methods, we designed a cross-modal diffusion reconstruction module to comple-
ment the deficiencies of traditional alignment methods. By introducing a diffu-
sion model with guided conditions, we achieved deep interaction between visual
and textual information, significantly optimizing the distribution of visual infor-
mation and enhancing the model’s perception of the visual information’s core
areas. Through this representation fusion strategy, we enabled two independent
modules to complement each other, thereby achieving the goal of enhancing
visual representation and improving model robustness.

In practical image-text multimodal classification tasks, we conducted exten-
sive experimental validation of MARNet, especially on two single-label datasets
involving dishes and ingredients, Vireo-Food172 and NUS-WIDE. Compared
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Fig.1. The proposed MARNet schematic diagram. The network mainly comprises
alignment and diffusion modules, wherein the alignment module matches and aligns
image and text information, and the diffusion module reconstructs the distribution of
image information.

to previous alignment frameworks, MARNet, as a model-agnostic algorith-
mic framework, significantly enhanced the quality of visual representation and
improved the framework’s performance in downstream tasks through its unique
embedding matching alignment module and cross-modal diffusion reconstruction
module. Through case analysis, we further demonstrated how the cross-modal
diffusion reconstruction module, by incorporating textual information, signif-
icantly improved the distribution of visual information in the representation
space and strengthened the model’s ability to recognize visual subjects, show-
casing MARNet’s strong potential and practical value in the field of multimodal
learning. The innovative contributions of this chapter are mainly reflected in:

1. We propose an innovative multimodal alignment and reconstruction network,
named MARNet. Under the fine guidance of textual information, this net-
work significantly improves the quality of visual information and markedly
enhanced the model’s decision-making ability in the visual domain. MARNet
is designed with flexibility, allowing easy integration with current mainstream
two-channel models to strengthen the capability of feature representation,
demonstrating outstanding versatility and reusability.

2. We introduce a cross-modal diffusion reconstruction module. This module
utilizes a diffusion model to smoothly unfold multimodal data along the time
axis, correcting visual modal information through deep interaction, effectively
optimizing the aggregation distribution of similar visual information. This
module not only enhances the model’s ability to process visual information
but also deepens its understanding of multimodal data.

3. We explore the respective advantages and limitations of existing cross-modal
alignment methods and diffusion model reconstruction representations, pro-
viding referential conclusions for future research.
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2 Related Work

2.1 Cross-Modal Alignment

In common cross-modal learning scenarios, there is a clear distribution difference
in the representation space among different modal data, and representations of
the same category from different modalities are disorganized. Cross-modal rep-
resentation alignment is needed to mitigate differences between cross-modal rep-
resentations. Leading-edge cross-modal alignment methods can be divided into
two paradigms: distance metric-based and contrastive learning-based methods.

In distance metric-based alignment methods, Lee et al. [13] project the deci-
sion information from different modalities into a spherical space, and optimize
the distance using the Wasserstein metric. Li et al. [16] propose centroid align-
ment, which explicitly pulls the distance of modal corresponding class closer by
calculating the centroids of clusters, while also incorporating decision informa-
tion for implicit alignment. Kang et al. [12] adopt a clustering alignment method,
optimizing the distance within and between category clusters by constructing an
intra-cluster sample matrix, achieving class-aware alignment.

In contrastive learning-based alignment methods, Jiang et al. [11] calculate
the cosine similarity of visual and textual representations among positive sam-
ples, enhancing the similarity between modalities. Xie et al. [36] integrate atten-
tion mechanisms into alignment methods on top of traditional global representa-
tion alignment, aligning internal information of representations at a finer gran-
ularity. Wang et al. [32] improving upon the InfoNCE [26] through contrastive
learning, maximize the similarity of positive image-text pairs in a common rep-
resentation space while minimizing the negative impact of other sample pairs.

2.2 Diffusion Models for Representation Learning

The diffusion model is inspired by non-equilibrium thermodynamics [30]. Ho et
al. [9] treat the diffusion process as a Markov chain by progressively adding
random noise to the data. They train neural networks to learn the diffusion
process, enabling them to denoise images corrupted with Gaussian noise.

Currently, diffusion models are mostly applied to generative tasks [17,31]. In
cross-modal diffusion models, there are commonly two approaches. One is using
classifier-free guidance [10], where text is used as a condition to guide image
generation with noise. The other is simultaneously adding noise from multiple
modalities into the network for multi-modal generation [22].

In terms of network structures used in diffusion models, U-Net architecture is
commonly employed in the image domain for noise prediction, with intra-layer
changes in image channels [9]. Additionally, some studies have utilized MLP
structures for diffusion in user-item interactions without channel dimensions
[20,21], focusing on simpler feature transformations.

Regarding image classification tasks based on diffusion models, Li et al. [14]
introduced a method to evaluate diffusion models as zero-shot classifiers. Clark
et al. [4] used density estimation calculated by a large-scale text-to-image gen-
eration model for zero-shot classification.
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3 Method

In this section, we elaborate on how our proposed framework(MARNet),
aligns image-text sample pairs in the representation space through embed-
ding matching alignment module(EMA), and how it mitigates the dis-
tribution differences existing in cross-modal information via cross-modal dif-
fusion reconstruction module(CDR), ultimately enhancing the interaction
between cross-modal data. The overall architecture diagram of MARNet is shown
in Fig. 2.
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Fig. 2. The framework diagram of MARNet. The input to MARNet is image-text data
pairs, which are processed by neural networks for vision and text to obtain x, and
x5, respectively. Modules EMA and CDR handle the multi-modal representations and
output representations rzeama and xcepr, which are fused in the end.

3.1 Overall Approach

Our goal is to learn more multi-dimensional and rich visual representations
from paired image-text data through privileged information learning, in order
to improve the classification performance of Multi-Modal Alignment and Recon-
struction Network(MARNet). More specifically, we treat the precious and scarce
ingredient data as privileged information to guide the representation of image
data, that is, the training samples consist of N pairs of image-text data
Sy = {(p1,41), (p2,42), .-y (Pn, i)}, while the test samples only contain M pieces
of photo data Syr = {p1,p2, ..., Pm }. We use a visual encoder F, to extract the
representations of image data R, = {zl, 22, ..., 2"}, where z,, = F,(p), and sim-
ilarly for text data, R = {zl,22, ..., 27} where x5 = F;(i). We take the visual
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representations x, and semantic representations x, as inputs for the subsequent
two modules. In the embedding matching alignment module, we finely align the
cross-modal representations through contrastive matching learning and generate
representations xgar4. In the cross-modal diffusion reconstruction module, we
adopt an improved diffusion model to stably and smoothly infiltrate the visual
representations x, into the semantic representations x; and sample to gener-
ate representations xoppg from Gaussian noise Ng. Finally, we fuse the output
representations of the modules as z; and predict the final classification results.

rpma = EMA(F,(p), Fs(i)) (

zopr = CDR(F,(p), Fs(1)) (2
x5 = fusion(Tema, LcDR) (
C = Classifier(zy) (

3.2 Embedding Matching Alignment

Based on the positive and negative sample matching alignment method of con-
trastive learning, we adopt an instance-wise Alignment(ITA) approach [32]. This
alignment method is an improvement based on InfoNCE [26], which calculates
the matching similarity (Sim(x?,z%)) of image-text representations in feature
space within a batch as a constraint to align cross-domain information. When
enhancing the similarity of a set of image-text representation pairs using positive
and negative sample matching methods, it also reduces the matching degree of
the visual representation z¢ with other semantic representations 27, where i # j.
Definition of cosine similarity is as follows:
; iy Tyt T
SR 22 = )

where 2¢ - 2% is the dot product of vectors, and ||2¢ ||||z%|| is the product of the
modulus of vectors.

We design two encoders F, and FEj, each consisting of a linear layer, and
use an activation function g(z) (i.e., LeakyReLU). The encoder E, is used to
map visual representations x,, while the encoder F; is used to map semantic
representations z, both to the same feature space R<.

g(z):{x’ ifz>0 (6)

azx, otherwise
2y = 9(By(@)) 2y = a1, 02, ¢ g1 ] (7)
20 = 9(Eu(0),00 = [21, 42, 1 09| (®)

where « is set to the default value of 0.01.
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We use the mutual matching cosine similarity between visual representation
’ . . ’ . .
x, and semantic representation z, as the alignment constraint £;7 4.

exp (Sim (w0, ) /7)
Sy exp (Sim (af,,2% ) /7)
exp (Sim (21,21, ) /7)
Sy exp (Sim (af,,a%, ) /7)
Lira = Lozs + Lszo (11)

Ly2s = —log (9)

£52v = - log (10)

where B is batch size, 7 is a temperature factor, which is initialized as 0.07. The
definition of cosine similarity is given in Eq. (5).

Building upon cross-modal matching alignment, to enhance the model’s per-
formance in downstream visual classification tasks, we introduce a constraint
cross entropy Lop that combines image prediction results § with real labels
y and weights it with the matching alignment similarity constraint L;r4 for
training the EMA module.

N

Lop=—Y yilog(§) (12)
1=1

Lema=o1-Leg+B-Lira (13)

where oy and 3 represent constraint weights.

3.3 Cross-Modal Diffusion Reconstruction

In this module, we further interact the visual representations x, and semantic
representations s based on the diffusion model. Through the diffusion model,
we alleviate the impact of background noise in the visual representation z, and,
with the assistance of semantic representation x,, generate more robust visual
object representations x.,.. In the following sections, we will first introduce the
background of diffusion models and then describe the cross-modal reconstruction
process based on diffusion model.

Background of Diffusion Models. The denoising diffusion probabilistic
model mainly consists of two processes: a forward process ¢ with diffusion and
noise addition, and a reverse process p with reconstruction and denoising. In
the forward process ¢, Gaussian noise is gradually added to the original training
data x over T time steps, following a Markov process:

q (xt | xtfl) =N ($t§ V1= 515%—17@1) (14)
q (x| 20) = N (45 vVaewo, (1 — &) I) (15)
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where zg ~ g(z) , N(.) means a Gaussian distribution, 8; determines the noise
schedule. oy = 1— ; and & = HZ:O a, utilize the above formula to sample the
noisy sample x; at any step t from xg.

In reverse process, the data is reconstructed by the model. The optimization
objective of the model is to maximize likelihood estimation pg(zg) of the true
data distribution, where 6 represents the parameters learned by a neural network.

1 Bt

1) = — - — ot 16

poot) = = (0~ o (o)) (16

po (zi—1 | xt) = N (21-15 po (04, 1) , 09 (4, 1)) (17)

In the case of conditional guided generation, we have a data pair (zg,yo) ~
(z,y). Similar to the above formula, we can derive:

o net) = <= (50~ o () ) 18)

Cross-Modal Reconstruction. We employ a diffusion model to reconstruct
the representations extracted by the base model across modalities. Firstly, we
design an multi-layer perceptron(MLP) consisting of four linear layers and acti-
vation functions for predicting 2% = Xy (2!, ¢, z,) during the reverse process.

In the forward process of the diffusion model, we treat the semantic represen-
tation x4 as the input to the diffusion model while using the visual representation
x, as a guiding condition. We smoothly interact the cross-modal representation
information by gradually injecting noise. The diffusion model is to minimize the
distant between £ and z0.

In this process, we construct the representation generation % constraint
by calculating mean squared error (MSE) between the reconstructed semantic
features #0 and the original input text features 2. To enhance the performance
of the generated representation on downstream tasks, similar to the Embedding
Matching Align module, we introduce the cross-entropy constraint to assist in
the training of the Cross-Modal Diffusion Recon module:

2
Luse = | Xo(zh, t,2,) — 2], (19)

Lopr =0z Lecg+7 Lusk (20)

where ag and « represent constraint weights, the Lo g has been given in Eq. (12).
Subsequently, during the reverse process, we initialize random Gaussian noise

as the model input. According to Bayes theorem, pg(x; — 1]x;) can be calculated
according to the following definition:

A l1-—a
By = 17;”1@ (21)
a oy (1 — -
po (o) = YOy (0t ) + VO o)

po (oale)) = N (w10 (o, t.) Bl (23)
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Similarly, guided by the visual representation z,, we generate the represen-
tations rcppr across modalities.

3.4 Multi-modal Embedding Fusion

In the final phase, we combine the representations, zgar4 and zopgr, outputted
by the previous two modules to realize the complementation and enhancement
of information across modalities.

Specifically, we utilize a range of techniques for the fusion of representa-
tions, encompassing direct concatenation, addition, multiplication, SUM, and
Harmonic(HM) [25]. Based on the integrated representation, we conduct classi-
fication tasks, serving as MARNet’s final output.

C= Classifier(zgma ® ToDpR) (24)

where @ represents the process of representation fusion, and C denotes the final
prediction result.

4 Experiment

4.1 Experiment Settings

Datasets. We conducted various experiments on the task of image classification
using the following two datasets:

Vireofood-172 [2]: A single-label classification dataset containing 110,241 dish
images across 172 categories, including 353 textual descriptions, averages three
texts per image. Following the settings in the original paper, we divided the
dataset into 66,071 images for training and 33,154 images for testing.

Ingredient-101 [1]: A single-label classification dataset comprising 93,425 dish
images from the Food-101 dataset, featuring 446 common ingredients across 101
categories, averaging 9 ingredients per dish. According to the original paper’s
settings, we utilized a training set consisting of 68,175 data pairs and a testing
set comprising 25,250 data pairs.

Performance Metrics. Since both datasets we used are single-label datasets,
we employed accuracy rate as the performance evaluation metric:

TP+ TN
TP+TN+FP+FN

Accuracy = (25)
where T'P is the number of true positive samples, T'N is the number of true neg-
ative samples, F'P is the number of false positive samples, and F'N is the number
of false negative samples. For the above indicator, we calculate the average value
of top-1 and top-5.
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4.2 Performance Analysis

To verify the effectiveness of our proposed MARNet in enhancing image classi-
fication performance and model robustness, we conducted experiments divided
into two categories: basic visual classification and cross-modal alignment that
incorporates textual information. In the visual network, we selected common
structures such as Vision Transformer (ViT) and residual neural networks
(ResNet). In the alignment network, we tried different alignment methods based
on ViT-B/16 and BERT models, including distance measurement and similarity
comparison. Table 1 shows the experimental results.

Table 1. The performance results of state-of-the-art visual neural networks and align-
ment networks on the datasets. Acc-1/5 refers to Accuracy Topl/5.

Method Model Vireo-Food172|Ingredient-101
Acc-1|Acc-5  |Acc-1|Acc-5
Visual Classification |ResNet-18 |77.3 |93.2 78.4 193.8
ResNet-50 [81.6 195.0 82.0 94.9
VGG-19 81.2 [95.1 81.4 (94.3
WRN 82.3 95.5 82.9 954
WISeR 82.8 196.5 83.2 [95.8
RepVGG  [83.5 [96.3 83.6 196.5
RepMLPNet|83.3 (96.2 83.8 196.5
ViT-B/16 854 [97.3 88.3 197.6
ViT-B/32 [84.6 [97.2 87.7 197.6
Swin-T 86.5 (97.5 88.6 [98.1

Cross-modal Alignment SWD 87.6 (97.9 88.6 (97.7
SSAN 87.1 97.7 88.5 97.7
CDD 86.0 [97.0 88.4 [97.6
SDM 87.6 97.7 88.7 97.7
TEAM 87.6 97.8 88.7 197.8
ITA 87.8 197.9 88.8 [97.8

MARNet |88.1 98.0 89.0 97.9

In experiments on visual networks, we can draw the following conclusions:

— In deep convolutional neural networks, ResNet-50 [8] has more convolutional
layers and a deeper network structure compared to ResNet-18 [8], resulting
in significant performance improvement. WRN [37] and WISeR [23] further
enhance the performance of ResNet-50 by increasing the network’s width
and introducing feature attention mechanisms, respectively. RepVGG [6] and
RepMLPNet [5] significantly enhance the performance of the base model VGG
[29] through structural reparameterization.
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Vision Transformer [7] divides the image into small patch blocks and estab-
lishes a global understanding of the image through self-attention mechanisms,
achieving optimal performance. Compared to ViT-B/32 with larger patch
size, ViT-B/16 can better capture the details in image information, thus
achieving better performance. Swin-Transformer [19] introduces hierarchical
attention to enhance the quality of visual representations, further improving
the model’s performance.

In alignment network experiments, the following conclusions can be drawn:

In alignment methods based on distance metrics, Slice WD [13] focuses on
multi-modal output spaces and performs well when semantic output is good.
Simultaneous Semantic Alignment Network [16] improves visual represen-
tation performance by attracting the centroids of representation clusters in
latent space. Contrastive Domain Discrepancy [12] uses clustering to make the
clusters more compact internally while repelling each other between clusters.
However, this method is susceptible to changes in initial representation qual-
ity and cluster centroid information, resulting in slightly inferior performance
compared to other methods.

In methods based on contrastive learning, representation pairs are divided
into positive and negative samples, enhancing model attention and surpass-
ing distance-based methods. Similarity Distribution Matching [11], Instance-
wise Cross-modal Alignment [32], and Token Embeddings Alignment [36] all
use cosine similarity to determine sample matching degree. TEAM focuses
more on positive pairs through attention, with performance heavily reliant
on text quality. ITA simulates unseen negative samples within a mini-batch,
increasing the distinction between positive and negative samples. Benefiting
from high-quality text information in the dataset, contrastive learning-based
alignment methods achieve strong and similar effects.

Contrastive learning-based alignment methods aim to enhance the similar-
ity between representation pairs in a shared latent space by distinguishing
positive and negative sample pairs. Simultaneously, these methods enforce
repulsion between matching image-text representation pairs and other non-
matching pairs (i.e., negative samples). This alignment approach gener-
ally outperforms distance-based methods, which often overlook the negative
impact caused by mismatched representation pairs within the same cluster.
Building upon contrastive learning-based matching alignment, MARNet uti-
lizes a diffusion model guided by visual representations to generate tex-
tual representations, effectively extracting crucial textual information from
images. Furthermore, we strategically fuse these representations to deepen
the interaction between image and text information. As a result, our innova-
tively proposed network achieves significantly improved performance.

4.3 Ablation Study

To validate the effectiveness of modules in MARNet, we conducted ablative
experiments using ViT model as baseline. The results are shown in Table 2.
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— Despite the potential noise interference in the image information, the base-
line model demonstrates decent performance due to the detailed perception
capability of ViT and the assistance of attention mechanisms.

— After incorporating the EMA module and introducing high-quality textual
information and alignment through contrastive matching, the model’s per-
formance improved significantly. However, the presence of residual noise and
interfering factors in the visual information limits the effect of alignment.

— By incorporating the CDR module, we facilitate profound interaction between
visual and textual representations to derive representations founded on visual
cues, thereby diminishing the impact of peripheral visual elements. Moreover,
to mitigate the impact of the MLP component within the CDR, module, we
introduce a validation process that exclusively leverages the MLP-mapped
features for assessing the efficacy of the CDR module.

— In the end, by integrating the EMA and CDR modules, we synergistically
enhance the alignment representation and reconstruction representation, fur-
ther strengthening the visual representation and model robustness.

Table 2. The chart presents the ablation experiment results of MARNet. Acc-1/5
refers to the Top 1/5 Accuracy.

Module Vireo-Food172(Ingredient-101
Acc-1|Acc-5  |Acc-1|Ace-5
Baseline 85.4 97.3 88.3 [97.6

+EMA 87.8 97.9  88.8 97.8
+MLP 85.5 95.4  [86.4 94.8
+CDR(MLP)86.9 925  88.0 90.5
+Fusion 88.1 98.0 89.0 97.9

4.4 Case Study

Reconstructed Feature Visualization. We conducted ¢-SNFE visualization
on features from the ViT base model and CDR module, selecting 100 samples
each from five Vireo-Food172 categories, as depicted in Fig. 3. From the visual-
ization results, it is evident that the reconstruction process based on the diffusion
model significantly improved the distribution of the representations and effec-
tively separated the confusing samples in the original representations. Due to
the diffusion model generating based on random noise, a small number of unsta-
ble samples within the space. However, these minimal instances of noise have
negligible impact on the performance of the model, as shown in Table 2.
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Fig. 3. Visualization of the basic representation x, and reconstructed representation
zcpr using t-SNE. As shown in the legend, the color of dots represents the category.

Analysis of CDR Results. In ablation experiments, we can clearly observe a
significant decrease in the TOP5 accuracy on the two datasets. We presented and
analyzed the prediction results of base visual module and CDR module (shown
in Fig.4): the confidence predicted by base model is typically distributed among
top 1-3 classes. However, the diffusion model, which incorporates semantic infor-
mation, tends to be completely confident in predicting a certain class, with the
confidence in other classes stemming more from the randomness of sampling
process. This leads to a situation where, when the prediction of the most likely
class is incorrect, base model can maintain a relatively high TOP5 accuracy,
while the diffusion model struggles to improve.

Confidence Levels of Base Predictions Confidence Levels of Reconstruction Predictions

0.0015 5.80e-04 3.70e-04 2.70e-08 2.80e-10 2.30e-10 1.60e-10

0
ice cream  frozen yogurt cup cakes  churros donuts icecream  cupcakes  chocolate  frenchtoast  churros

Fig. 4. Prediction results of the basic module and CDR module. The minimal confi-
dence values are represented in scientific notation, e.g., 6.4e-1 indicates 0.64.

5 Conclusion

In this article, we tackle the issue of heterogeneity in multi-modal data by intro-
ducing the Multi-Modal Alignment and Reconstruction Network (MARNet).
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This network addresses the disparities in distance and distribution within the
feature space through a dual approach: embedding matching alignment(EMA)
modules and cross-modal diffusion reconstruction(CDR) modules. Our experi-
mental findings validate that MARNet significantly improves the quality of visual
information and optimizes the distribution of representations.

Moving forward, our efforts will concentrate on reducing noise interference
during reconstruction phase of the diffusion model, with the overarching goal of
preserving the integrity of original information to the greatest extent possible.

Acknowledgments. This work is supported in part by the Oversea Innovation Team
Project of the “20 Regulations for New Universities” funding program of Jinan (Grant
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