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AbstractÐCross-training has become a promising strategy to
handle data heterogeneity problem in federated learning, which
re-train a local model across different clients to improve its
generalization capability in a privacy-preserving manner. Its
main idea is to make the local models to fit the data of all clients.
However, the heterogeneity between data sources may lead the
local models to quickly forget the knowledge learned in several
rounds of cross-training. To address the problem, this paper
presents a novel prototype guided cross training mechanism,
termed PGCT, to regularize the change of class-level data repre-
sentations across clients. It includes two main modules, where the
prototype guided representation learning module employs client-
aware prototypes of data patterns learned by clustering to guide
the learning of consistency representation across feature spaces.
This maintains the similar decision boundary across different
clients. The prototype-based feature augmentation module uses
prototypes as soft attention regularizers to further aggregate
rich information to enhance the discrimination of historical
features. Experiments were conducted on four datasets in terms
of performance comparison, ablation study and case study, and
the results verified that PGCT can learn discriminative features
with different classes under the guidance of prototypes, which
leads to better performance than the state-of-the-art methods.

Index TermsÐFederated learning, Cross Training, Prototype
Guided, Knowledge Forgetting

I. INTRODUCTION

Federated learning is an emerging distributed learning

paradigm and it enables multiple parties to build a shared

model working for them [1]–[3]. Existing federated learning

methods allow model-level interaction between client and

server without sharing local data [4], [5]. This enables feder-

ated learning can effectively avoid the risk of privacy disclo-

sure. However, recent studies have revealed the vulnerability

of the federated learning model when exposed to the non-

independent and identical distribution scenarios [6]–[8]. This

is mainly due to the bias between the local and the global

optimization objective, and it is difficult to aggregate multiple

biased learners into a high-performance global model.

Existing methods for mitigating data heterogeneity issues

can be roughly divided into two categories: regulating the

local process under global constraints [5], [9], [10] and

improving the generality of the local model [11]–[13]. The

former approaches use the global output as the knowledge to

guide multiple clients learn a unified objective. Conventional

algorithms along this line of research include feature-based,

parameter-based, and prediction-based constraints, such as

FedDC [10] and MOON [5] align the output of the local and

Fig. 1. Motivation of PGCT. (a) The corss-training procedures of FedExg may
lead the local models to have a significant change in decision boundaries; (b)
PGCT is able to regularized the learned data representations to be similar to
those learned from previous clients when performing cross-training.

global model in the parameter and feature space respectively.

The latter methods focus on the expansion of knowledge,

which enable local models to fit distinct data distributions. For

example, FedExg [12] and FedMe [13] apply the cross-training

strategy to re-train a local model across different clients to

learn comprehensive knowledge. As observed, utilizing cross-

training strategy can automatically adjust the optimization

objective of local models. However, the inconsistency of data

distribution among clients also brings knowledge forgetting

problems, which leads to limited performance gains.

To address this problem, this paper presents a novel

prototype guided cross training mechanism, termed PGCT. As

illustrated in Figure 1, compared with conventional method

with cross-training, the proposed PGCT implements prototyp-

ical knowledge distillation to learn consistent representation

across clients and maintain similar decision boundary. Specif-

ically, PGCT has two main modules: the prototype-guided

representation learning (PGRL) module and the prototype-

based feature augmentation (PFA) module. Considering that

private data cannot be shared, PGCT memorizes class-aware

prototypes to replace class-level representations. The PGRL

module utilizes these prototypes to guide the learning of

consistency representation to maintain the discrimination of

corresponding features. The PFA module focuses on stabiliz-

ing the decision phase, and it uses representative prototypes

as soft-attention regularizers to refine and augment image

features, which leverages linear combination in feature-level

to fuses information from intra-class representations across

clients.

Experiments are conducted on four commonly used datasets

in terms of performance comparison, ablation study of the key



components of PGCT, and case study for the effectiveness of

representation learning. The results verify that prototypes can

be used as effective knowledge to guide representation learning

and prototype-guided cross-training can expand the learnable

knowledge of the local model to alleviate classification bias.

To summarize, this paper includes two main contributions:

• A model-agnostic cross-training mechanism, termed

PGCT, is proposed to alleviate the knowledge forgetting

problem. To the best of our knowledge, this is the first

method that uses data prototypes to guide local models to

learn consistent representation across clients in federated

learning.

• We found that the knowledge forgetting mainly comes

from two aspects, namely, the inconsistency in repre-

sentation distributions and the loss of discrimination to

historical features. And we also verifies the effectiveness

of PGCT in solving these problems.

II. RELATED WORK

A. Federated learning with cross-training

To solve the data heterogeneity problem in federated learn-

ing, there are different training strategies: 1) local training +

global aggregation and 2) local training + random exchange

+ cross training + global aggregation. The former methods

typically align local and global optimization objectives, such

as FedProx [4] and FedUFO [14] aim to align the output of the

local and global model in parameter and feature space, respec-

tively. The latter approaches utilize cross-training mechanism

to retrain local models across different clients. This enables

local models to be trained on more data to learn comprehensive

knowledge, such as FedExg [12] and FedMe [13]. Notably,

cross-training is orthogonal to the former methods and it can

be combined with these techniques in the local training phase.

Therefore, cross-training is a promising strategy to improve

the generalization capability of local models.

B. Knowledge distillation in federated learning

Knowledge distillation is also widely used to handle data

heterogeneity problem in federated learning [15]–[18]. Ex-

isting methods typically rely on a proxy dataset, and they

aggregate the local predictions of proxy dataset rather than

model parameter or gradient [15], [16]. However, it is observed

that the correlation of proxy data and local data determines

the validity of the decision. Inspired by prototype learning,

many studies have shown that global prototypes can serve

as effective knowledge to guide the update of local models

[19]–[21]. Prototypes are derived from the average features of

all classes, it is easy to implement and involves no privacy

breaches, but may lose some representative information by

averaging.

III. CROSS-TRAINING WITH PROTOTYPICAL

DISTILLATION

A. Overall framework

The Prototype Guided Cross-Training mechanism (PGCT)

in federated learning, as depicted in Figure 2, has three main

phases, including local training, cross training, and global ag-

gregation. In phase 1, PGCT can use any federated learning al-

gorithm to optimize the model and it memorizes a class-aware

prototype for each class. Then, PGCT introduces a random

shuffling for local models and prototypes, then anonymously

broadcasts them in sever, which enlarges the trainable dataset

for local models without privacy leakage. In phase 2, each

client obtains the model and prototypes learned from phase

1 in another client for re-training. It has two key modules,

the Prototype Guided Representation Learning module and the

Prototype-based Feature Augmentation module. PGCT obtains

all local models from phase 2 and aggregates them to generate

a global model in phase 3.
B. Prototype-Guided Representation Learning

The Prototype-Guided Representation Learning (PGRL)

module retrains a model under the guidance of class-aware

prototypes to fit distinct data distribution. It performs a gener-

alized version of contrastive learning to align the distribution

of prototypes and image features. This enables a local model

to learn invariant representations across clients.

To realize cross-client prototypical distillation, we generate

a class-aware prototype by clustering for each class [22]–

[24]. It can learn visual patterns of classes and gather similar

features of the same classes into a cluster. For example,

to calculate prototypes on client j, the procedure can be

formulated as:

Cm
1 , Cm

2 , ..., Cm
n = clustering(Fj(x)|x ∈ Dm

j ) (1)

where Cm
i denotes i-th cluster of class m, Dm

j denote the data

of class m. Fj(·) is a feature extractor. And the prototype pmj
of class m in clientj is learned by weighting, defined by

pmj =

n∑

i=1

|Cm
i |

|Dm
j |

mean(fm|fm ∈ Cm
i ) (2)

As shown in Figure 2, after random exchange, the PGRL

module in the client j obtains the local model Ei and class-

aware prototypes pi from client i. To prevent the overlapping

of representations between different classes in the latent space

happening, PGCT learns unified features by maximizing agree-

ment between the sample and the corresponding prototype.

Inspired by contrastive learning in representation learning, we

define the prototype-based contrastive loss similar to NT-Xent

loss [25]:

LPCL = − log
exp(sim(fx, p

+)/τ)

exp(sim(fx, p+)/τ) +
∑

exp(sim(fx, p−)/τ)
(3)

where p+ and p− denote the prototype with the same and

different labels as feature fx respectively. sim(·) is cosine

similarity function, τ is a temperature parameter.

C. Prototype-based Attention Weighting for Feature Augmen-

tation

The Prototype-based Feature Augmentation (PFA) module

aims to exploit the historical features to improve the gen-

eralization of local models. A practical idea is to reuse the

class-aware prototypes to refine and augment image features.



Fig. 2. Illustration of the framework of PGCT. PGCT can use arbitrary algorithms (such as FedAvg and MOON) to optimize local model in phase 1, and
generate a class-aware prototype for each class. After random exchange, PGCT learns unified representations across clients to maintain the similar decision
boundary and generates augmented feature via prototype-based attention weighting to enhance classification in phase 2. Finally, PGCT aggregates all local
models in phase 3.

Specifically, it uses Gaussian noise to perform prototype

augmentation and regards the augmented prototype as a soft

attention regularizer to generate attention weights, defined by

p̃naug = p+N (0, 1)× ε, n = 1, 2, ... (4)

where ε is a scale parameter. To obtain smoother decision

boundaries at feature level, the PFA module realizes feature

augmentation by attention weighting to assist classification and

the attention weights can be defined by dot product similarity,

wn = softmax(fT · p̃naug) (5)

where the softmax(·) normalizes the scores across all aug-

mented prototypes. And the augmented image features fuse

the information of the corresponding prototype and original

image features, it can be expressed as

f̃aug = f +
∑

j

wn · p̃naug (6)

And we use an augmentation loss to optimize the model,

LAug = CE(F(f̃aug), ỹaug) (7)

where F(·) is a classifier, ỹaug denotes the label of augmented

features f̃aug .

D. Training Strategies of PGCT

PGCT focuses on learning cross-client consistency features

under the guidance of prototypes and using augmented features

to assist classification. Consequently, the integrated objective

of PGCT in cross training is to minimize

Ltotal = E(x,y)∼Dlocal
[Lcls + α · LPCL + λ · LAug] (8)

where Lcls is cross entropy loss for image features classifi-

cation, LPCL is prototype-based contrastive loss and LAug is

augmentation loss. α and λ are loss weights.

IV. EXPERIMENTS

A. Experiment Settings

1) Datasets: We use three benchmarking datasets MNIST

[26], CIFAR-10 [27], CIFAR-100 [27] and a medical image

dataset PathMNIST [28] that are commonly used in federated

learning for experiments. Their statistics are shown in Table

II.2) Network Architecture: For a fair comparison, we use the

same network architectures for all approaches. And the net-

work includes three modules: an image encoder, a projection

head, and a classifier. As in the previous works [5], [10], for

all datasets, we use a 2-layer MLP as the projection head, and

the classifier is a 1-layer fully-connected network. We use two

fully-connected layers as an encoder for MNIST. For CIFAR10

and PathMNIST, we use a CNN network that has two 5 ×

5 convolution layers followed by 2×2 max pooling and two

fully connected layers with ReLU activation. For CIFAR100,

ResNet-18 without the last fully-connected network is adopted

as the encoder.

3) Hyper-parameter Settings: For all methods, the local

training epoch E = 10 in a global round, the client number

N = 10 with the sample fraction C = 1.0, the local

optimizer is SGD algorithm, communication round T = 100,



TABLE I
PERFORMANCE COMPARISON OF ALGORITHMS. FOR ALL METHODS, WE RUN TWO TRIALS AND REPORT THE MEAN AND STANDARD DERIVATION.

MNIST CIFAR10 CIFAR100 PathMNIST
β = 0.3 β = 0.5 β = 0.3 β = 0.5 β = 0.3 β = 0.5 β = 0.3 β = 0.5

without FL SOLO 74.21±2.9 77.98±1.2 38.65±0.4 39.52±0.8 22.53±0.4 22.87±1.3 31.03±1.4 38.17±0.6

FL without
Cross-Training

Fedavg 96.14±0.8 96.65±0.9 65.64±0.8 66.36±1.0 63.18±1.1 63.54±0.7 70.71±1.5 73.35±0.9
FedProx 96.48±0.2 97.10±0.3 66.03±0.4 66.65±0.5 63.89±0.5 64.57±0.6 72.18±0.4 74.67±0.2

SCAFFOLD 97.11±0.1 97.31±0.4 66.26±0.2 66.82±0.7 58.54±0.3 58.78±0.6 69.47±0.5 72.11±0.6
FedDyn 97.15±0.3 97.29±0.1 67.12±0.3 67.31±0.2 63.89±0.5 64.64±0.3 71.09±0.6 73.27±0.4
MOON 96.84±0.7 97.36±0.3 68.54±0.8 69.03±0.4 64.92±0.7 64.56±0.6 73.62±0.7 74.49±0.4
FedDC 97.24±0.5 97.35±0.5 68.29±0.6 69.10±0.8 64.38±0.3 64.55±0.6 74.21±0.4 75.63±0.3

FL with
Cross-Training

FedExg 96.81±0.3 96.95±0.8 67.34±0.2 67.89±0.4 63.94±0.2 64.58±0.1 71.75±0.6 73.98±0.9
FedMe 96.76±0.4 97.05±0.6 67.68±0.2 68.19±0.3 63.54±0.2 64.21±0.3 72.29±0.4 74.41±0.4

PGCT(Fedavg) 97.88±0.4 98.22±0.3 68.89±0.2 69.43±0.4 65.43±0.5 65.74±0.4 75.12±0.4 77.42±0.5
PGCT(FedProx) 98.01±0.2 98.31±0.2 68.96±0.5 69.74±0.3 65.14±0.6 65.38±0.8 75.08±0.3 77.32±0.3
PGCT(MOON) 98.10±0.2 98.14±0.2 70.23±0.6 71.05±0.4 65.44±0.6 65.83±0.6 75.38±0.7 77.36±0.3

TABLE II
STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

Datasets #Classes #Training #Testing

MNIST 10 60000 10000

CIFAR10 10 50000 10000

CIFAR100 100 50000 10000

PathMNIST 9 89996 7180

the shardperuser. For local training, we set the weight decay

as 1e-05 and the batchsize as 64, the learning rate is initiated

to be 0.01, the Dirichlet parameter β = 0.3 and β = 0.5, the

temperature parameter τ = 0.5, α and λ are selected from

{0.01, 0.05, 0.1, 0.5, 1.0}, the scale parameter ε is selected

from {0.1, 0.01}. And the settings of other hyper-parameters

refer to the corresponding paper.

B. Performance Comparison

We compare PGCT with existing methods in three cate-

gories: 1) local training without federated learning, SOLO;

2) federated learning (FL) methods without cross-training,

including FedAvg [1], FedProx [4], SCAFFOLD [6], FedDyn

[29], MOON [5] and FedDC [10]; 3) FL methods with cross-

training, including FedExg [12] and FedMe (The simplified

version adopts the idea of mutual learning) [13]. The following

results can be obtained from Table I.

• PGCTFedAvg, PGCTFedProx and PGCTMOON achieve sig-

nificant improvements in classification compared to orig-

inal baselines, which demonstrates the algorithm-agnostic

character of the PGCT algorithm.

• PGCT generally achieves better performance than other

algorithms. It is reasonable since PGCT is able to en-

large the training set of local models and alleviate the

knowledge forgetting problem.

• Federated learning methods with cross-training usually

obtain better performance than the corresponding baseline

(FedAvg). It verified that cross-training can combine with

other algorithms and bring performance gains for them.

• For different distribution parameters β, the performance

of all algorithms increases with the increase of β. It

mainly because a small β results in highly skewed local

datasets. This proves that it is important to balance the

classes of local data.

TABLE III
ABLATION STUDY OF PGCT ON MNIST AND CIFAR10 DATASETS.

MNIST CIFAR10

β = 0.3 β = 0.5 β = 0.3 β = 0.5

Base 96.14±0.8 96.65±0.9 65.64±0.8 66.36±1.0
+Exg 96.81±0.3 96.95±0.8 67.34±0.2 67.89±0.4

+Exg+PFA 97.16±0.4 97.31±0.3 67.43±0.5 67.94±0.3
+Exg+PGRL 97.70±0.2 98.06±0.4 68.25±0.3 68.87±0.1

+Exg+PFA+PGRL 97.88±0.4 98.22±0.3 68.89±0.2 69.43±0.4

C. Ablation Study

This section further studied the effectiveness of different

procedures of PGCT. The results are summarized in Table III

• Using solely the model exchange (Exg) may not to lead a

significant improvement, since the knowledge forgetting

issue. The improvement is still limited even combined

with the Prototype-based Feature Augmentation module

(PFA).

• Model exchange (Exg) with the assistance of the Pro-

totype Guided Representation Learning (PGRL) outper-

forms basic model on both datasets with a large margin

up to 1.5% and 2.5% which verifies the effectiveness of

representation learning .

• PGCT achieves the best performance combining Exg,

PGRL and PFA, which demonstrates that consistent

representation learning and reinforcement classifiers can

alleviate knowledge forgetting.

D. Case Study

1) Error Analysis of PGCT.: This section further analyzes

the working mechanism of PGCT from the perspective of

feature attention and outputs of the model. And we use

GradCAM [30] to generate heatmaps. As observed in Figure

3(a), the model in phase 1 cannot focus on small target, both

FedExg and PGCT can learn new knowledge in the cross-

training phase to make up for this deficiency and make correct

predictions. When the model in phase 1 can focus on the

classification objective, PGCT can retain this ability and give

a correct prediction, while FedExg fails in classification due

to knowledge forgetting, as shown in Figure 3(b). Figure 3(c)

shows the case that the model in phase 1 learn a poor attention

and gives a unreliable guidance to PGCT, while FedExg can



Fig. 3. (a) Cross-training methods can correct errors (b) PGCT achieves knowledge preservation in view of feature attention. (c) PGCT fails due to wrong
guidance. (d) PGCT reduces the prediction difference between the ground-truth and top-1.

Fig. 4. Visualization of representations in the feature space. PGCT learned
discriminative feature distribution under the guidance of the prototype.

focus on learning new knowledge and attend to the ’airplane’

regions and make the correct decisions. Figure 3(d) illustrates a

case that both methods make the wrong predictions. However,

PGCT better attends to the airplane region and reduces the

difference of prediction between ’airplane’ and top-1. These

observations verify the effectiveness of PGCT for federated

classification with cross-training.

2) Quality analysis of representation learning: This section

further studies the quality of representation learning. As shown

in Figure 4, we use TSNE [31] technology to visualize

representations in the feature space on the CIFAR10 test

dataset. And we randomly selected local models of two clients.

Obviously, the local models trained by the FedAvg method

learn poor representation distribution, there is an overlap of

multiple class features here. This is because local model faces

unbalanced data distribution, which leads to poor generaliza-

tion ability of the local model to the global data. Compared

with FedAvg, FedExg and PGCT use cross-training to enlarge

the trainable data set of the local model, which enables it to

learn comprehensive knowledge. However, FedExg may obtain

limited improvement due to knowledge forgetting. Intuitively,

PGCT learns more discriminative representation distribution.

It verified that Prototype Guided Representation Learning

module helps PGCT improves the generalization ability of

local models.

V. CONCLUSION

This paper presents a novel cross-training mechanism,

termed PGCT, to handle the knowledge forgetting prob-

lem. PGCT performs prototype-guided representation learning

to learn cross-client consistency representation. And PGCT

adopts prototype-based feature augmentation for enhancing

classification. Experimental results show that PGCT can ef-

fectively learn the invariant representations of the same class

and discriminative representations of different classes across

clients. This improves the generalization ability of local mod-

els.

This study can be further explored in two directions.

First is to introduce causal inference [32], [33] to improve

the effectiveness of prototype learning. Second, expanding

the PGCT to more challenging tasks is valuable, such as

multimodal learning [34]–[37], domain generalization [38],

[39], recommendation task [40]–[44], and long-tail image

classification [45].
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