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Abstract—Multimedia recommendation aims to fuse the multi-
modal information of items for feature enrichment to improve the
recommendation performance. However, existing methods typi-
cally introduce multi-modal information based on collaborative
information to improve the overall recommendation precision,
while failing to explore its cold-start recommendation perfor-
mance. Meanwhile, these above methods are only applicable when
such multi-modal data is available. To address this problem,
this paper proposes a recommendation framework, named Cross-
modal Content Inference and Feature Enrichment Recommen-
dation (CIERec), which exploits the multi-modal information to
improve its cold-start recommendation performance. Specifically,
CIERec first introduces image annotation as the privileged
information to help guide the mapping of unified features from
the visual space to the semantic space in the training phase. And
then CIERec enriches the content representation with the fusion
of collaborative, visual, and cross-modal inferred representations,
so as to improve its cold-start recommendation performance.
Experimental results on two real-world datasets show that the
content representations learned by CIERec are able to achieve
superior cold-start recommendation performance over existing
visually-aware recommendation algorithms. More importantly,
CIERec can consistently achieve significant improvements with
different conventional visually-aware backbones, which verifies
its universality and effectiveness.

Index Terms—Cross-Modal, Content Inference, Feature En-
richment, Cold-Start Recommendation

I. INTRODUCTION

Personalized recommendation aims to capture the users’ pref-
erence and provide them with the appropriate items [1]–[4].
However, the cold-start problem is a ubiquitous challenge
in recommendation, which leads to bias in the training of
traditional collaborative filtering recommenders and visually-
aware recommenders (e.g., Matrix Factorization (MF) [5] and
Visual Bayesian Personalized Ranking (VBPR) [6]). That is,
the randomization problem and the popularity bias problem.
Content-based recommendation, which leverage the multi-
modal information to improve its cold-start performance, has
attracted considerable attention [7], [8]. However, the data in
web and mobile applications is diverse and unstable [9], [10],
and the performance of existing algorithms is generally limited
by the learning of heterogeneous multi-modal representations,
which is not always available. Therefore, robust cross-modal
inference methods for heterogeneous modal cold-start recom-
mendation are urgently needed.

∗ indicates corresponding author.

User 𝑢

Preference Score

visual feature 𝒗!

semantic feature 𝒔!

user embeddings 𝒑"

Image 
Annotation 𝑡

item embeddings 𝒒!

𝑒𝑚𝑏"(𝑢)

,𝑦"! = 𝒢( , )

𝑒𝑚𝑏!(𝑖)

𝒯#(ℇ(𝑓))

𝒯!(ℇ(𝑓))

𝒯$(𝒄!)

Item 𝑖

Cross-modal
Inference

Multi-modal
Fusion

Fig. 1. The main framework of CIERec. CIERec designs a novel cross-modal
inference strategy to infer the cross-modal semantic content representations by
introducing the privileged information into the existing visually-aware cold-
start recommendation task.

Existing cold-start recommendation methods can be cate-
gorized into two classes, based on the targets they aim at.
One class is the information-based methods, which generally
incorporate heterogeneous content features from the user’s
or item’s auxiliary information [11]–[13] into the cold-start
recommendation. Another class is representation-based meth-
ods, which are able to learn the fine-grained representations
by dynamically optimizing the recommendation models [8],
[14]–[16], thus improving the cold-start recommendation per-
formance. These features are mainly obtained by encoding
the items’ multi-modal content information, and the accuracy
and stability of these algorithms are decreased when these
heterogeneous information is not available.

To address these issues, we present CIERec, a novel Cross-
modal Content Inference and Feature Enrichment Cold-start
Recommendation framework. It introduces image annotation
as the privileged information to guide the mapping progress
of the content representation from the visual space to the
semantic space and enriches it by fusing the collaborative,
visual, and inferred semantic features to improve its cold-start
performance. Figure 1 shows the main framework of CIERec.
Specifically, we first model the collaborative interactions in the
collaborative representation learning (CRL) module. We then
extract the item’s uniform embedding with a traditional visual
encoder(e.g. ResNet18) in the source-modal representation
learning (SMRL) module. Next, to deal with the difficulty of
mapping heterogeneous features, we propose a novel cross-
modal inference strategy to map content representations from
the visual space to the semantic space with the guidance of
prior knowledge at the cross-modal representation learning
(CMRL) module, which design follows a learning paradigm
called learning using privileged information (LUPI) [17].



Finally, a multi-modal fusion method is used to integrate the
user embeddings, the item embeddings, the visual features, and
the inferred semantic features for the final recommendation
in the multi-modal representation fusion (MRF) module. As
observed, CIERec is able to alleviate the absence of heteroge-
neous modalities in cold-start recommendations through cross-
modal inference, thereby improving the stability and accuracy
of existing visually-aware cold-start recommendation models.

To validate the effectiveness of the proposed CIERec, we
conduct the performance comparison on the pre-processed
Allrecipes [18] and Amazon CDs [6] datasets against previous
advanced visually-aware recommendation algorithms. We also
conduct extensive experiments, including the ablation study to
verify the effectiveness of the different components in the pro-
posed CIERec, and the case study to visualize the distributions
of heterogeneous modal representations. The experimental
results demonstrate that the advantages of Tri-CDR are: (1)
the privileged information can help to model the mapping
relationship of content information in the visual and semantic
space. (2)The dual-gating module in the CMRL module can
optimize the cross-modal inference process of heterogeneous
representations. (3) CIERec can further improve its cold-start
performance with the fusion of multi-modal representations,
allowing the downstream task to focus on the user’s preference
information from multiple perspectives. Furthermore, CIERec
achieves consistent and significant improvements over the
existing visually-aware recommendation methods with differ-
ent benchmarks (e.g., MF [5] and VBPR [6]), proving its
effectiveness and universality. Overall, the main contributions
are summarized as follows:

• This paper proposes a novel Cross-modal Content Infer-
ence and Feature Enrichment Recommendation frame-
work, CIERec, which can improve the cold-start perfor-
mance of existing visually-aware recommendation meth-
ods through cross-modal semantic inference and multi-
modal representation fusion.

• We design a content-enriched cross-modal inference strat-
egy to model the heterogeneous representation inference
process and extract the fine-grained multi-modal repre-
sentations based on the leverage of privilege information.
It can be applied as a cross-modal inference module for
the general task of multi-modal representation learning.

• We conduct extensive experiments to verify the effective-
ness of the proposed CIERec on multiple datasets with
different visually-aware recommendation models. The
experimental results demonstrate CIERec’s effectiveness,
universality, and stability.

II. RELATED WORK

A. Multi-modal Learning in Recommendation

As a common multimedia analysis method, multi-modal learn-
ing has been widely used in the fields of computer vision [19]–
[23], data mining [24]–[27], information retrieval [28], [29],
and recommendation [12], [30], [31]. In recommendation,
multimedia recommendation aims to incorporate the items’

content information to model the fine-grained representation
and thereby improve its performance. These methods can
be classified as multi-source information embedding meth-
ods [12], [32], [33] and heterogeneous information inference
methods [30], [34], according to the available information.
The multi-source information embedding methods refer to the
introduction of multiple sources of heterogeneous information
from the heterogeneous information networks [35] and the
knowledge graph [33] as the content information to comple-
ment the collaborative information, which can decrease the
dependence of the recommendation model on the interaction
information. Heterogeneous information inference methods
aim to learn the mapping function from one modality space to
another modality space, thus making the content representation
extracted from the same item has similar distributions. These
above methods typically perform cross-modal inference based
on the user’s interactive information [31] or multi-modal
information [30], [34] of items, thus reducing the gap between
the user’s interest manifold and the visual semantic manifold.
However, existing cross-modal content inference methods are
rarely demonstrated against their cold-start recommendation
performance, and lack the in-depth analysis of the effec-
tiveness of the source-modal information and the inferred
information for recommendation.

B. Visually-aware Recommendation

With the development of image analysis techniques in the field
of CV [36]–[40] and NLP [41]–[43], a series of works have
validated that the incorporation of visual features of items
can improve recommendation performance [6], [7], [18], [30].
Inspired by the significant performance of Convolution Neural
Network (CNN) in image classification, most visually-aware
recommendation methods incorporate pre-extracted features as
the item’s embedding into the recommendation [6], [44], [45].
However, previous visually-aware recommendation methods
with pre-extracted features typically utilize the items’ visual
features related to their category information while ignoring
the users’ personalized interests. Therefore, recent visually-
aware recommendation methods extract visual features with
an end-to-end approach to jointly optimize image encoders
and recommenders. Deepstyle [46] replaces collaborative rep-
resentations with the real-time extraction of the items’ visual
features to capture the user’s multi-dimensional preferences.
PiNet [30] learns the visual features that contain both visual,
semantic, and collaborative information by jointly optimizing
the image encoder. However, these algorithms only take into
account the visual information of the items, leading to the
suboptimal performance.

C. Cold-Start Recommendation

The cold start problem is common in recommendation due to
the imbalance of interactions, where a few users or items dom-
inate the interactions in the dataset. It may lead to the ’popular
bias’ [47], whereby active users perform better than cold users
and popular items are more likely to be recommended than
cold items. Existing cold-start recommendation methods can
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Fig. 2. The overall structure of CIERec. The CRL module is used to learn the user’s collaborative representation pu and the item’s collaborative representation
qi; the SMRL module can be used to extract the visual feature vi; the CMRL module learns the cross-modal inferred feature ci and then generate the
semantic feature si from the unified feature ei; the MRF module is able to fuse the aforementioned representations and calculate the final preference score.

be categorized into two categories by their targets, namely
information-based methods that introduce auxiliary data (e.g.,
heterogeneous information [12] and social information [11])
into recommendation, and the representation-based methods
that modify recommendation models dynamically through
meta-learning [14], transfer learning [16], contrastive learning
[8] and other techniques. However, these algorithms have dif-
ficulty in achieving idealized recommendations performance
when heterogeneous information is not available for certain
modalities. To address this problem, existing studies usually
deal with interaction information specifically. DropoutNet [48]
adopts the dropout mechanism for the observed interactions to
improve the model generalization capability. A series of stud-
ies [45], [49] attempt to leverage the generalization capabilities
of adversarial learning, targeting at augmenting the unobserved
interactions.

III. TECHNIQUE

A. Framework Overview
CIERec introduces a cross-modal inference and feature

enrichment framework to enable the enrichment of content
representations through feature-level cross-modal inference.
As shown in Figure 2, CIERec can be divided into four main
modules, including the Collaborative Representation Learning
(CRL) module, the Source-Modal Representation Learning
(SMRL) module, the Cross-Modal Representation Learning
(CMRL) module, and the Multi-modal Representation Fusion
(MRF) module, as illustrated in the following sections.

B. Collaborative Representation Learning (CRL)
As shown in Figure 2, CRL learns the collaborative repre-

sentation pu and the item collaborative representation qi from
the embedding matrix based on the randomly sampled user
u and item i, which is similar to the traditional collaborative
filtering method. The learning process can be expressed as:

pu = embu (u)

qi = embi (i)
(1)

where embu(.) denotes the embedding matrix of users, and
embi(.) denotes the embedding matrix of items.

C. Source-Modal Representation Learning (SMRL)

CIERec generates visual feature vi in the SMRL module to
complement the collaborative representation qi. Specifically,
as illustrated in Figure 2, the SMRL module extracts the
uniform embedding E(f) 7→ ei from the image f through
the visual encoder E(.). Inspired by the dual-gating mecha-
nism [30], we develop a novel multimodal-gating function to
generate the visual feature Tv (ei) 7→ vi by mapping with
the visual-aware gate Tv , and constrains its optimization with
the gradient-regularization gate R. The overall computational
equation can be expressed as:

vi = Tv (E (f)) (2)

There is significant heterogeneity between the image regions
focused by visual feature vi and semantic feature si, which is
difficult to be directly mapped from the uniform embedding
ei. Therefore, CIERec proposes a visual-aware gate to control
the delivery of visual information. The visual-aware gate Tv(.)
of CIERec introduces a self-learning gate vector gv and the
user representation pu in addition to the uniform embedding
ei, and maps them to the visual feature space, which is defined
as follows:

vi=Tv (ei)=MLPv

(
ei ⊙ δ (pu∥ei∥gv)

max(∥ei ⊙ δ (pu∥ei∥gv)∥2 , ϵ)

)
(3)

where ∥ denotes the concatenate operator, ⊙ denotes the dot
product operator, ∥.∥2 denotes the ℓ2 regularization function,
ϵ = 1e−12 denotes a small value to avoid division by zero,
δ (.) denotes a fully connected layer and MLPv(.) denotes a
fully connected layer followed by the LeakyReLU activation
function. We further describe the gradient-regularization gate
R in Sec. III-D3.



D. Cross-modal Representation Learning (CMRL)

In addition to generating the visual feature vi, we firstly
performs cross-modal semantic inference based on the infer-
ence gate Ti to learn the inference feature ci from the unified
embedding ei; And then we conducts semantic fusion based
on the prior knowledge, that is, fuses the semantic knowledge
s of image annotation t with the cross-modal inference feature
ci to generate semantic feature si via the semantic-aware gate
Ts, which in turn complements the multimodal representation.

1) Semantic Inference: In preliminary experiments, we
found that the incorporation of semantic information can
significantly improve the recommendation performance of
traditional visually-aware recommendation methods. Existing
multimedia recommendation methods generally rely on the
modal richness of the recommendation datasets, which per-
forms poorly when semantic information is unavailable. To
address this issue, the CMRL module generates the cross-
modal inference feature Ti (ei) 7→ ci by mapping from
the unified embedding ei with the inference gate Ti(.) and
uniformly optimizes it with the gradient-regularization gate
R. It is defined as follows:

ci =
ei ⊙ δ (ei∥gs)

max(∥ei ⊙ δ (ei∥gs)∥2 , ϵ)
(4)

where gs denotes the learnable inference gate vector, ∥ denotes
the concatenate operator, ∥.∥2 denotes the ℓ2 regularization
function, ϵ = 1e−12 denotes a small value to avoid division
by zero and ci denotes the inferred feature.

2) Semantic fusion for privileged information: The inferred
feature ci derived from the uniform embedding ei contains
a certain amount of redundant information, leading to bias
in the subsequent recommendation process. To address this
issue, the CMRL module also introduces the prior semantic
information to improve the model’s ability to represent se-
mantic modalities. The CMRL module uses LSTM [50] as the
building block for the semantic element encoder to capture the
relationship between the prior semantic representation and the
inferred representation. The process of extracting the semantic
embedding Ts (ci) 7→ si can be represented as:

si = LSTM(ci∥ŝi) (5)

where ŝi denotes the privileged knowledge encoded from the
image annotation, LSTM(.) denotes the the LSTM operator,
si denotes the calculated semantic embedding.

3) Gradient-regularization Gate: CIERec fuses the gra-
dients of the two heterogeneous representations with the
gradient-regularization gate R, aiming to allow the visual
encoder to trade off the visual feature vi and the inferred
semantic feature si from the unified embedding ei during
the backpropagation. The visual gradient-regularization gate
is implemented based on the deep Q-network (DQN) [51]
approach. It selects the action s(t) via a classifier MLPv

DQN to
map the 5D state vector of s(t−1) at batch t, where MLPv

DQN

denotes a fully-connected layer followed by a Softmax ac-
tivation function. And then it penalizes this action by the

TABLE I
STATISTICS OF THE EXPERIMENTED DATASETS.

Datasets Users Items Interactions Elements Sparsity

Allrecipes 68,768 45,630 1,093,845 2,736 99.97%

Amazon CDs 67,282 40,314 752,724 467 99.97%

J
(t)
v = exp

(
−L(t+1)

v

)
obtained by the feedback from the

recommendation model, with the loss function as following:

Ldqn = − log σ
(
s(t)max · J (t)

v

)
(6)

where s(t)max is the probablity of selecting s(t), and σ (.) is the
Sigmoid Function. Similarly, we have J

(t)
s = exp

(
−L(t+1)

s

)
for the semantic gradient-regularization gate.

E. Multimodal Representation Fusion (MRF) Module

To demonstrate the universality of CIERec, we take the
traditional collaborative filtering algorithms MF and VBPR
as the backbone models for this module, which represent user
and product as an embedding vector, with the core idea of
estimating the user’s preference as the inner product of their
embedding vectors [5]. In addition to the user representation
pu and the collaborative representation qi, MRF module also
receives the visual embedding vi and the semantic embedding
si for recommendation. The fusion operation of multi-modal
representations can be represented as:

fi = Tf (qi,vi, si) = MLP (qi∥vi∥si) (7)

where Tf denotes the fusion gate of the multi-modal rep-
resentations, MLP(.) denotes a fully connected layer with
a LeakyReLU activation function, and fidenotes the multi-
modal fused representation of item i. The process of calculat-
ing preference scores for the BPR-MF and VBPR algorithms
is defined as following:

ŷMF = α+ βu + βi + p⊤
u fi

ŷV BPR = α+ βu + βi + βc + p⊤
u fi + a⊤

u ci
(8)

where α denotes the self-learning global bias, βu, βi and βc

denote the self-learning bias of user u, item i and the content c
respectively, au denotes the implicit representation, ŷMF and
ŷV BPR denote the preference score of MF and VBPR.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We conduct experiments on two real-world
recommendation datasets, where Allrecipes was constructed
by Gao [18] and Amazon CDs was extracted from the original
Amazon dataset [6] to meet the needs for this task. To
verify the effectiveness of CIERec in alleviating the cold-
start problems in recommendation, we divided Allrecipes and
Amazon CDs into two parts with the interaction boundary of
3, i.e., the cold-start set with few interactions and the warm-
start set with a relatively large number of interactions. Table I
summarizes the statistics of the datasets. Both datasets follow



TABLE II
PERFORMANCE COMPARISON OF CIEREC WITH EXISTING BASELINE ALGORITHMS ON AMAZON CDS AND ALLRECIPES DATASETS.

Methods Algorithms

Amazon CDs Dataset Allrecipes Dataset

Cold Warm All Cold Warm All

R@10 NDCG@10 R@10 NDCG@10 R@10 NDCG@10 R@10 NDCG@10 R@10 NDCG@10 R@10 NDCG@10

Backbone
MF 0.1719 0.1483 0.1763 0.3678 0.1734 0.2233 0.2427 0.1936 0.1962 0.4555 0.2275 0.2793

VBPR 0.1724 0.1533 0.1933 0.4087 0.1796 0.2411 0.2539 0.2050 0.2204 0.4948 0.2429 0.2999

Multi-modal

Learning

MF(Image) 0.1634 0.1459 0.1930 0.3994 0.1736 0.2331 0.2450 0.1975 0.2085 0.4782 0.2330 0.2894

MF(Semantics) 0.1843 0.1589 0.2107 0.4086 0.1933 0.2447 0.2376 0.1886 0.2103 0.4683 0.2286 0.2801

VECF 0.1796 0.1555 0.1989 0.4062 0.1871 0.2426 0.2608 0.2062 0.2284 0.4977 0.2502 0.3016

HAFR-non-i 0.1872 0.1619 0.2052 0.4174 0.1934 0.2498 0.2600 0.2095 0.2290 0.5064 0.2499 0.3067

PiNet 0.2100 0.1833 0.2240 0.4367 0.2148 0.2705 0.2770 0.2209 0.2377 0.5106 0.2641 0.3158

Cold-Start

Learning

DropoutNet 0.1744 0.1507 0.1876 0.3790 0.1789 0.2292 0.2503 0.2002 0.2043 0.4619 0.2353 0.2859

AMF 0.1717 0.1484 0.1818 0.3750 0.1752 0.2263 0.2494 0.2006 0.2069 0.4734 0.2355 0.2899

AMR 0.1826 0.1620 0.2000 0.4160 0.1886 0.2494 0.2619 0.2106 0.2238 0.4977 0.2494 0.3046

CLCRec 0.1963 0.1723 0.2087 0.4391 0.2005 0.2641 0.2571 0.2056 0.2327 0.5012 0.2491 0.3024

Cross-modal

Learning

CIERec(MF) 0.2257 0.1981 0.2461 0.4706 0.2327 0.2918 0.2789 0.2228 0.2427 0.5165 0.2670 0.3190

CIERec(VBPR) 0.2376 0.2091 0.2602 0.4957 0.2454 0.3076 0.2832 0.2269 0.2447 0.5209 0.2706 0.3232

the data partitioning method used in Allrecipes, where the train
set includes the earliest 60% of the interaction data for each
user, the test set includes the latest 30% of the interaction data,
and the remaining 10% is used as the valid set.

2) Evaluation measures: Following the classical cold-start
recommendation works [8], [52], two widely-used metrics are
adopted to evaluate the performance of the cold start recom-
mendation, including Recall (R) and Normalized discounted
cumulative gain (NDCG) [8]. Following [30], we randomly
select one negative sample for each positive sample in training,
while in testing five hundred items are randomly selected as
the negative samples (have no interaction with the user) from
the dataset along with all positive items (have interactions with
the user) to form the ranking candidate for each user. R@K
and NDCG@K calculate the performance of positive samples
in the Top-k ranking items for all sampled items. To alleviate
the problem of randomness, we repeat the evaluation process
five times and report the average value.

3) Implementation details: Based on the efficiency and per-
formance of ResNet18 in recommendation [53] and prediction
[54], CIERec used it as the visual encoder to extract the
uniform representations with the dimension of 512. The cross-
modal recommendation model was optimized by Adagrad with
the learning rate from 0.0001 to 0.5, and the DQN model was
optimized by Adam with the learning rate from 0.00001 to
0.005. Both the batch size and the dimension of the CIERec
were selected in 32, 64, 28, 256, and these optimizers are
decayed proportionally for every four epochs, with the decay
rate chosen from 0.1, 0.5.

4) Baselines: We compare CIERec with both multi-modal
learning models and cold-start learning models:

• MF [5] is a classical recommendation model to utilize the
implicit feedback information with Bayesian Personalized
Ranking.

• VBPR [6] is a factorization model to incorporate pre-
extracted visual features into recommendation.

• MF(Image/Semantic) [5] is a variant of MF where we
replace the collaborative embedding with visual or se-
mantic feature. For fair comparisons, we use the same
pre-extracted visual features and semantic feature for
training, noted as MF(Image) and MF(Semantic).

• VECF [55] capture the visual and textual features by a
multi-modal attention network seamlessly.

• HAFR-non-i [18] learns the user’s preference via the vi-
sual images, ingredients and the collaborative information
of the interacted recipes.

• PiNet [30] is a heterogeneous multi-task learning frame-
work that learns visual features containing with semantic
and collaborative information, which is also the baseline
method for the proposed CIERec.

• DropoutNet [48] learn a DNN-based latent model via the
dropout mechanism based on the idea that cold start is
equivalent to the missing data problem.

• AMF [49] learns the effective collaborative feature via
adding gradient-based perturbations to item embedding.

• AMR [45] adds random-based perturbations and gradient-
based perturbations to the pre-extracted visual features to
model the effective visual information.

• CLCRec [8] is a SOTA model in cold-start recommenda-
tion that optimizes the dependence between items’ em-
bedding and content information via contrastive learning.

B. Performance Comparison

In this section, we compare CIERec with the algorithm
mentioned in section IV-A4 for performance comparison. For
each algorithm, we have fine-tuned its hyper-parameters to
obtain its best performance in the experiments. It can be
observed from Table II that:

• MF [5] with content features achieves consistent im-
provements over MF on most datasets and metrics,
whereas replacing the collaborative information only with
content information from a single modality can lead to a



TABLE III
RECALL@10 ON ABLATION STUDY OF CIEREC(MF) AND CIEREC(VBPR).

Algorithms

CIERec(MF) CIERec(VBPR)

Amazon CDs Allrecipes Amazon CDs Allrecipes

Cold Warm All Cold Warm All Cold Warm All Cold Warm All

Base 0.1634 0.1930 0.1736 0.2450 0.2085 0.2330 0.1724 0.1933 0.1796 0.2539 0.2204 0.2429

Base+CI 0.1688 0.1766 0.1715 0.2405 0.2071 0.2296 0.1685 0.1850 0.1742 0.2445 0.2130 0.2342

Base+CI+TA 0.1906 0.2043 0.1953 0.2536 0.2177 0.2419 0.1843 0.2135 0.1943 0.2739 0.2368 0.2617

Base+CI+TA+GR 0.2006 0.2145 0.2054 0.2718 0.2325 0.2589 0.2059 0.2184 0.2102 0.2777 0.2407 0.2656

Base+CI+TA+GR+PI 0.2257 0.2461 0.2327 0.2789 0.2427 0.2670 0.2376 0.2602 0.2454 0.2832 0.2447 0.2706

(b) Base+CI(a) Base (c) Base+CI+TA+GR+PI

Fig. 3. Visualization of the learned t-SNE transformed representations derived from (a) Base, (b) Base+CI, and (c) Base+CI+TA+GR+PI mentioned in
Sec.IV-C. Each star denotes a user and the points with the same color indicate the interacted item.

decrease in cold-start performance (MF(Image) achieved
a 4.9% decrease on Amazon CDs and MF(Semantics)
obtained a 1.9% decrease on Allrecipes), demonstrating
the necessity of fine-grained processing of multi-modal
information in cold-start recommendations.

• PiNet [30] outperforms the traditional visually-aware
recommendation methods (e.g., VECF [55] and HAFR-
non-i [18]). This is mainly owing to the fact that it
introduces semantic information in addition to visual
information to regularize the learning process of the
content representation.

• CIERec outperforms existing multi-modal learning meth-
ods in all performance metrics, which validates that
CIERec can bring significant and consistent improvement
over existing recommendation methods by fusing the user
representation, the collaborative representation, and the
multi-modal content information obtained from cross-
modal inference.

• CIERec achieves higher cold-start improvements on the
Amazon CDs, which is due to its fewer classes of seman-
tic elements. That is, the same semantic element category
corresponds to more items, thus making the cross-modal
inferred semantic information more representative. It also
proves the importance of semantic information in cold-
start recommendation.

C. Ablation Study

In addition to the overall performance comparison, we
further explore the effectiveness of the combinations of com-
ponents in CIERec. Specifically, we use Base, CI, TA, GR and
PI to represent using the components of plain recommendation
model, cross-modal inference, task aware gate, gradient regu-
larization and privileged information respectively. The ablation
results are shown in Table III and we have the following
findings:

• For ’CI’, that is, cross-modal inference without any
constraints, the application of naive inference in rec-
ommendations leads to a significant degradation of its
performance. This may explained by the fact that a large
number of visual information is lost in the cross-modal
transformation.

• For ’TA’ and ’GR’, ’TA’ facilitates the modeling of
mapping relationships between heterogeneous modalities
through task-aware gates in each modality; while ’GR’
can help to learn the optimization direction of hetero-
geneous representations through gradient-regularization
gates within the constraints of reinforcement learning.
CIERec can further improve its performance by combin-
ing these components.

• The ’PI’ component is able to introduce the prior
knowledge (e.g., the textual annotations of the image
of the item) as the privileged information based on the
existing components, which helps to enhance the model’s
ability to mine visual information. As such, it allows the



original visual features to be fully utilized to achieve the
best cold-start recommendation results.

D. Case Study
In this section, we attempt to investigate how the CIERec

facilitates the learning process of the multi-modal representa-
tion in the embedding space. To this end, we randomly selected
five users and items they interacted with to explore how these
embeddings varied in different methods.

As shown in Figure 3, the relevance of users and items is
well reflected in the t-SNE space, namely, the more relevant
representations are embedded in the more similar positions.
We found that naive cross-modal inference leads to a collapse
of its training procedure, whereas the embedding representa-
tions learned by CIERec show a significant clustering effect,
that is, points with the same color tend to form clusters. These
observations demonstrate that CIERec is able to effectively
facilitate the learning process of cross-modal representations
by augmenting content information, so that the representation
of users and the items they interact with tend to be close to
each other, which may be one of the reasons for CIERec’s
superior performance.

V. CONCLUSION

This paper proposes a novel cross-modal content infer-
ence and feature enrichment recommendation framework,
CIERec, which conducts the cross-modal inference from the
visual space to the semantic space based on the items’ prior
knowledge, and combines a multi-modal representation fusion
method to trade-off the heterogeneous representation model-
ing process from the multi-modal information. Experimental
results demonstrate that the introduction of cross-modal in-
ferred information is able to improve the items’ representation
from multiple perspectives, which makes CIERec superior to
existing methods in cold-start recommendation.

Future work of this study will focus on two main directions.
First, the heterogeneous alignment techniques may help to
model the mapping relationships between visual features and
cross-modal inferred features at a multi-granularity level,
leading to an increased information gain. Second, we will
further improve the representational capability of CIERec by
filtering noisy information in cross-modal inference with the
graph convolutional network.
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