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Abstract

Video classification requires event-level representations of
objects and their interactions. Existing methods typically rely
on data-driven approaches, which either learn such features
from whole frames or object-centric visual regions. There-
fore, the modeling of spatiotemporal interactions among ob-
jects is usually overlooked. To address this issue, this paper
presents a Decomposition of Synergistic, Unique, and Re-
dundant Causal Representations Learning (SurdCRL) model
for video classification, which introduces a newly-proposed
SURD causal theory to model the spatiotemporal features of
both object dynamics and their in- and cross-frame interac-
tions. Specifically, SurdCRL employs three modules to model
the object-centric spatiotemporal dynamics using distinct
types of causal components, where the first module Spatial-
Temporal Entity Modeling decouples the frame into object
and context entities, and employs a temporal message passing
block to capture object state changes over time, generating
spatiotemporal features as basic causal variables. Second, the
Dual-Path Causal Inference module mitigates confounders
among causal variables by front-door and back-door interven-
tions, thus enabling the subsequent causal components to re-
flect their intrinsic effects. Finally, the Causal Composition
and Selection module employs the compositional structure-
aware attention to project the causal variables and their high-
order interactions into the synergistic, unique, and redundant
components. Experiments on two benchmarking datasets ver-
ify that SurdCRL better captures event-relevant object-centric
representation by decomposing spatiotemporal object inter-
actions into three types of causal components.

Introduction

With the continuous advancement of video representation
learning techniques, such as spatiotemporal convolutional
networks and Video Transformers, video classification has
achieved remarkable progress. Unlike a mere collection of
static images, video captures rich temporal dynamics and
evolving semantic interactions. To better model such com-
plexities, recent research has gradually shifted from scene-
level modeling to a more fine-grained, object-centric per-
spective, focusing on how different entities interact over
time. However, this modeling process often faces challenges

*Corresponding Author
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Semantlc Regions FBD Causal Graph Prediction

P @
|Foregr0und

2 [
- 1 visual region |_> ’G\ ﬂ' |~.| < S
@ @%@ v :&63\\: qg:»s

ackground I o
‘ﬂ‘b\v\ \\‘\v

isual region )

s.w

Object Interactions( ) SURD Causal Graph Prediction

¢ Unique component ~

=§:ﬁ1;3%zm' '6\ I
1

O l
@ e

«‘b\“’\‘\ x\“*’

1
1
1
!
-
1
1
1

'Synerglsnc componem'

Tt (b)

Figure 1: By introducing SURD theory, SurdCRL inte-
grates object-centric causal representation. The conventional
causal graph (a) focuses on foreground-background decom-
position. In contrast, the surd causal graph (b) captures ob-
ject interactions as distinct components and mitigate the bias
caused by confounders Z to enable precise inference of Y.

such as visual ambiguity and contextual interference, which
make models more prone to focusing on patterns that are
irrelevant to video understanding. These limitations hinder
the development of representations that are both discrimina-
tive and generalizable. Thus, effectively identifying object-
centric representation from complex spatiotemporal dynam-
ics remains a critical challenge in video classification.

To better represent the spatiotemporal dynamics in
videos, existing methods can be broadly categorized into
three types. The first leverages 3D convolutions or spa-
tiotemporal attention to globally model frame dependencies,
but often overlooks key semantic objects and their interac-
tions. The second type shifts toward object-centric models
(Liu et al. 2025), where semantic entities are extracted us-
ing external detectors, alleviating semantic dilution in global
encoding. However, due to data biases introduced by ex-
ternal detectors and spurious correlations from statistical
bias in the training data, the discriminative capability of the
model is inevitably compromised. The third type incorpo-
rates causal inference (Pearl et al. 2016) to uncover struc-
tural dependencies and eliminate confounders. For instance,
counterfactual reasoning and causal intervention have been
applied to reduce bias in multimodal tasks like VQA (Antol



et al. 2015). However, most of these methods rely on ex-
ternal textual knowledge. Although recent studies have ex-
plored causal modeling in unimodal video understanding, as
shown in Figure 1(a), they typically construct a causal graph
by decomposing frames into foreground and background,
which results in limited semantic expressiveness.

The recently proposed SURD causal theory (Martinez-
Sénchez, Arranz, and Lozano-Durdn 2024) decomposes
causality into synergistic, unique, and redundant compo-
nents. Inspired by this theory, this paper presents a Decom-
position of Synergistic, Unique, and Redundant Causal Rep-
resentations Learning (SurdCRL) method for video classifi-
cation. As shown in Figure 1(b), SurdCRL decomposes spa-
tiotemporal object-centric interactions into distinct causal
components and applies causal inference by means of the
do-operator in the early modeling stage to suppress spuri-
ous patterns induced by confounders. Specifically, SurdCRL
first employs the Spatial-Temporal Entity Modeling (STEM)
module to disentangle each frame into object and context en-
tities and model their temporal transitions, generating spa-
tiotemporal features that serve as basic causal nodes in the
structural causal model. Next, the Dual-Path Causal Infer-
ence (DPCI) module leverages these features from STEM
and applies front-door and back-door interventions to block
confounding paths toward object and context nodes, miti-
gating data biases from unobservable confounders and sup-
pressing spurious correlations caused by observable back-
ground noise. Finally, the Causal Composition and Selection
(CCS) module models spatiotemporal interactions among
entities using structure-aware attention and a CDF-based
sampling strategy, projecting the object-centric representa-
tion into synergistic, unique, and redundant components.

To validate the effectiveness of SurdCRL, we conduct ex-
tensive experiments on two benchmark datasets, including
performance comparison, ablation studies, in-depth analy-
sis, and case studies. The results show that SurdCRL effec-
tively models object representations by incorporating causal
theory. In summary, the main contributions of this paper are:

* This paper presents a SurdCRL causal model based on
SURD theory which decomposes causality into synergis-
tic, unique, and redundant components. To the best of our
knowledge, this is the first causal model that models the
object-centric representation in video classification.

* SurdCRL mitigates bias from confounders among causal
variables via causal inference, enabling better modeling
of high-order interactions and allowing each causal com-
ponent to contribute its true effect to classification.

» Experimental results verify that SurdCRL refines the
structural causal model via decomposed causality, en-
abling the model to focus on event-relevant object-centric
interactions and achieve precise video understanding.

Related Work

Video Classification Video classification has been exten-
sively explored through various architectural paradigms.
Early CNN-based methods such as SlowFast (Feichtenhofer
et al. 2019), X3D (Feichtenhofer 2020), and TSM (Lin,

Gan, and Han 2019) utilize 2D/3D convolutions with multi-
path or shift mechanisms for better temporal modeling.
Transformer-based models like ViViT (Arnab et al. 2021),
VideoMAE-v2 (Wang et al. 2023), InternVideo-v2 (Wang
et al. 2024b) and Uniformerv2 (Li et al. 2023a) further en-
hance long-range temporal modeling via attention mecha-
nisms, masked pretraining, and hybrid designs. More re-
cently, state-space models such as VideoMamba (Li et al.
2024) provide efficient solutions for modeling temporal de-
pendencies with lower computational cost. However, these
models often overlook confounding biases and fail to cap-
ture fine-grained object-centric representation.

Object-Centric Video Representation Learning Object-
centric video representation learning focuses on construct-
ing robust object-level features for tasks like action local-
ization and recognition (Xu et al. 2023; Qu et al. 2025).
Early works (Zhang et al. 2019; Materzynska et al. 2020)
enhance CNNs with tracking or spatial interaction modules.
Transformer-based models such as ORViT (Herzig et al.
2022) and DAIR (Li et al. 2025a) introduce object-aware
attention for temporal reasoning, while others leverage tra-
jectories (Zhang et al. 2024), vision-language pretraining
(Zhang et al. 2023), or slot attention (Qian, Ding, and Lin
2024; Didolkar et al. 2025) to enable scalable object discov-
ery without dense labels. However, most methods depend on
external detectors or priors, making them sensitive to detec-
tion noise and spurious correlations. Recent works (Li et al.
2023b; Huang et al. 2025) attempt to reduce appearance and
background bias as well as cross-modal redundancy through
spatial priors and adaptive sampling, but still lack explicit
causal modeling to systematically mitigate such biases.

Causal Inference in Video Understanding Compared to
traditional debiasing techniques (Wang et al. 2020; Qi et al.
2023), causal inference has shown promise in reducing spu-
rious correlations and disentangling model effects (Wang
et al. 2022a,b; Qi et al. 2025b; Meng et al. 2025). In mul-
timodal video tasks, such as Video Question Answering,
counterfactual reasoning (Niu et al. 2021; Vosoughi et al.
2024; Wang et al. 2025) and interventions (Liu, Li, and Lin
2023; Chen et al. 2025, 2024; Wang et al. 2024a) have been
applied to alleviate vision-language bias and capture cross-
modal structures. However, most methods rely on textual
supervision. Though recent efforts (Wang et al. 2024c; Liu
et al. 2024) explore causal modeling in purely visual modal-
ities, they often construct causal graphs through coarse fore-
ground, background, and motion decomposition, limiting
semantic expressiveness and interaction understanding.

Problem Formulation

This study investigates feature representation in video clas-
sification. Given a dataset D = {V; | ¢ = 1,...,N}
with labels Y = {y; | ¢« = 1,...,J}, conventional
methods extract frame-level features F,, = M (V) using a
holistic encoder M, and predict labels via category map-
ping P(F,) — Y. Object-Centric Representation Learn-
ing (OCRL) methods decompose frames into object patches
O = {0; | 01,0,...,0k} and a context patch C,
and extract features Fy,. via an object-centric encoder B(-):
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Figure 2: Diagram of the decomposition of causal dependen-
cies between a vector of observed variables Q = {Q1, @2}
and a target variable Y into their synergistic (S), unique (U)
and redundant (R) components.

F,c = B(O,C). The above methods model the likelihood
P(Y | V). In contrast, causal representation learning meth-
ods introduce the do-operator and extract deconfounded fea-
tures Fy = Z(do(V')), where 7 is a structural causal model
under the distribution P(Y | do(V)).

Our proposed SurdCRL is inspired by the SURD causal
theory, which decomposes causal effects into synergistic,
unique, and redundant components. We first extract object O
and context C' entities using a tracker, their features are then
obtained as F,, = 7,(0) and F, = 7.(C), where T, and 7.
denote the spatial-temporal feature extraction network. To
mitigate the effect of confounders, we extend beyond con-
ventional OCRL methods by applying front-door FZ(-) and
back-door BZ(-) interventions to F, and F. respectively.
Further extending beyond simple foreground-background
causal decoupling, we introduce a composition and sam-
pling module 7(-) to model entity interactions and derive
the synergistic, unique and redundant causal components:
Fy, Fy,,F. = H(F,, F.). These components are fused for
the final prediction: P(F,, Fs, F,.) —» Y.

Preliminary on SURD Causal Theory

The SURD theory (Martinez-Sanchez, Arranz, and Lozano-
Durdn 2024) decomposes causal effects among observed
variables Q = {Q1,Q2,...,Q N} on a future outcome Q;r

into three components: Unique causality from Q; to QT
that cannot be obtained from any other individual variable
Q1. # Q,. Redundant causality from Q; = {Q;,,Qi,,... }
to Q;r refers to the shared causal influence collectively con-
tributed by all elements in the subset Q; C Q. Synergistic
causality from Q; = {Q;,, @i, ... } tO Qj arises from the
joint effect of the variables in Q;.

Although the SURD theory provides a principled way to
decompose causal effects, it is not directly applicable to
video classification due to the lack of clearly defined vari-
ables. To bridge this gap, our study formalizes this theory
and creates a trainable model. Specifically, as illustrated
in Figure 2, we provide the following definitions: (1) Ob-
served variables (Q: Q denotes the object-context patches
extracted from input video V. (2) Target variable Q;r: Q;r
denotes the prediction logits Y. (3) Unique component U
U={Ug,,Uq,, ...}, whereeach Uy, = T(Q);) represents
the patch-level feature of (Q; extracted by the spatiotempo-
ral modeling network 7'(-), providing information for pre-

dicting Y that cannot be substituted by other variables. (4)
Redundant component R: R = {Rq,,Rq,, ...}, where
each Rq, = RS(Q;) denotes the overlapping information
among variable combinations that are already captured by
individual variables in relation to predicting Y, and RS(-)
is a redundant sampler. (5) Synergistic component S: S =
{5Q.,5Qy;--- . where each Sq, = SS5(Q;) denotes the
joint effect of variables in Q;, providing additional discrim-
inative power for predicting Y beyond any single variable,
and SS(+) is a synergistic sampler.

Methodology

This paper presents a SurdCRL causal model, as shown
in Figure 3, SurdCRL includes three modules: Spatial-
Temporal Entity Modeling (STEM) for extracting object and
context spatiotemporal features as grounded causal nodes
in the causal graph. Dual-Path Causal Inference (DPCI) ap-
plies front-door and back-door interventions to remove con-
founders, and Causal Composition and Selection (CCS) for
composing and selecting higher-order interactions, disentan-
gling synergistic, unique and redundant components.

Spatial-Temporal Entity Modeling Module

The Spatial-Temporal Entity Modeling (STEM) module
constructs spatial-temporal causal nodes from input video by
decomposing frames into object O; and context C entities,
ie., V. — 0;,V — C. These nodes serve as foundational
representations for subsequent causal reasoning.

Object-Centric Representation Learning Given video
frames, a ViT-style encoder extracts patch features X &
RTHWXd and object tracking boxes B € RT9** are ob-
tained via SAM2 (Ravi et al. 2024). RolAlign and spatial
positional encoder D are then applied to obtain spatial ob-
ject representations, which are further processed by a video
encoder () to produce object tokens X, € RTO*d:

X, = ¢(RolAlign(X, B) + D(B)) (1)

where T is the number of frames, O the number of objects,
HW the spatial resolution, and d the feature dimension.

To model object dynamics, we design a Temporal Mes-
sage Passing (TMP) Block, where each object at each frame
is a node v with latent state h. The message passing process
includes two steps (Gilmer et al. 2017): message computa-
tion and state update. First, at each iteration ¢, differences
between latent states are measured by various distance met-
rics, and the message from temporal neighbors u € N, (i.e.,
the same object across adjacent frames) is computed as:

mitt = ®(distance(h!, h')) @

where ® instantiates a multi-layer perceptron. Next, the state
update formulated as hi™' = hi + m*! captures temporal
state transitions. Iterating this process over all frames yields
object state change features F,, € RTOxd,

To further capture global dynamics, we introduce a Global
Cross Multi-Head Relation Aggregation (MHRA) to obtain
the global temporal object features F, € RO >
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Figure 3: Illustration of the proposed SurdCRL framework, which consists of three core modules: STEM, DPCI and CCS. Each
module plays a distinct role in constructing the causal graph by modeling nodes and edges, and their collaboration models the
synergistic, unique, and redundant causal components, leading to the construction of a structural causal model (SCM).

where q, € R'*? represent a learnable global temporal to-
ken, W,, Wy, W, are learnable projection matrices.

Context Representation Learning To obtain comple-
mentary semantics for better video understanding, we mask
object box regions in the original frames and encode the re-
maining context using ¢(-), followed by mean pooling to
obtain the aggregated context feature F,, € R9.

Dual-Path Causal Inference Module

In video representation learning, the typical observational
likelihood is modeled using Bayes’ rule as P(Y|V) =
>, P(Y|V,2)P(2|V), where P(z|V') may introduce biased
weights. However, training a video classification model aims
to capture the true causal effect. To achieve this, the Dual-
Path Causal Inference (DPCI) Module decomposes P(Y'|V)
into P(Y'|C) and P(Y|O), and applies causal interventions
in the causal graph to block confounding paths C + Z¢ —
Y and O; + Z} — Y, enabling the model to reason
from simpler semantic cues and capture the true synergis-
tic, unique, and redundant causal effects in the later stages
of modeling the structural causal model.

Back-Door Intervention Observable confounders Z?2
arise from contextual statistical biases, causing the model to
prioritize high-frequency background visual patterns, which
may lead to spurious associations between context features
C and prediction Y. To mitigate the effect of such con-
founders Z2, we adopt a back-door intervention strategy
based on do-calculus, blocking the confounding path Z¢ —
Y. The causal effect is estimated as:

P(Y|do(C)) =Y P(Y|C' = R.(V.2))P(z) )

where R.(-) is a context encoding function. To reduce the
computational cost of multiple passes over all z, we use
the Normalized Weighted Geometric Mean (NWGM) to ap-
proximate the results expected from the above feature layers:

P(Y|do(C)) "R P(Y|C = Y R.V.2)P(2))  (5)

We parameterize the network to approximate the conditional
probability in Eq. 5 (Yang et al. 2023) as follows:

P(Y[do(C)) = Wafe(c) + WhE [f.(2)] (6)
where W, and W, are learnable parameters. To obtain
E.[f.(2)], we approximate it as a weighted integration of all
background prototypes, i.e., E,[f.(z)] = Zf\;l wizi P (2i),
where p; measures the relevance of each prototype z; to the
context feature C, and P(z;) reflects its empirical frequency.
In practice, we apply dot-product attention to compute p;,

using softmax {(WCC')T (Waz:) NE} The term f.(c) is

computed via a linear projection and fused with E,[f,(2)]
to yield the debiased context representation F .

Confounder Dictionary Z Due to the absence of ground-
truth context labels, we construct a confounder dictionary
Z = [29,...,29] from observable background patterns.
Specifically, we apply masking to frames and extract fea-
tures via a pretrained backbone, forming a confounder pool
P. K-Means clustering with PCA is then applied to derive
Z, where each prototype z{ is the centroid of a cluster in P.

Front-Door Intervention Besides Z¢, object sequences
O may embed unobservable confounders ZY, which are
hard to model directly because detector limitations can cause
causal targets to be missed or introduce confounding tar-
gets. These confounders affect the prediction Y via the path
O < Z} — Y. To address this, we adopt a front-door ad-
justment by introducing an intermediate variable M along
the causal path O — M — Y. This forms a two-stage pro-
cess: a selector that distills task-relevant cues (O — M), and
a predictor that generates outputs based on the mediated fea-
tures (M — Y'). By using this path, we block the influence
of Z) — O. The standard likelihood can be written as:

P(Y|0) =Y P(M=m|O)P(YIM =m) (1)

To remove the influence of spurious correlations caused by
the unobservable confounders Z;', we apply the do-operator



to both O and M, yielding:
P(Y|do(0)) =Y P(o') Y P(Y|m,o)P(m|O) (8)

= ]EO/ Em‘O[P(Y|O/,m)] (9)

where o’ denotes input samples of the whole object repre-
sentation space. Inspired by (Wang et al. 2024a), base on the
linear mapping model, Eq. 9 becomes Ey,|,[m] + Ey [0'],
where the bold symbol m are intermediate features extracted
from O, and o’ to mean the object features randomly sam-
pled by the K-means from the entire training samples.

To implement the above expectations, we apply two lin-
ear layers to F, to generate m; and ms. m; is passed
through self-attention to produce local features Fr, which
represent [, [m]. Meanwhile, my serves as key/value in
cross-attention, where the queries o’ are randomly sampled
from an object global clustering dictionary G to yield global
features F, approximating E,[0’]. The final debiased ob-
ject representation F}, is obtained by fusing Fr, and Fi.

Causal Composition and Selection Module

This module constructs synergistic, unique, and redundant
causal nodes via compositional structure-aware attention
and adaptive sampling. Starting from unique component
U of individual variables, it builds higher-order interac-
tions and disentangles them into S and R, forming the path
U, S, R — Y and yielding the structural causal model.

Compositional Structure-Aware Attention Block We
first concatenate the debiased features F,, and F., to obtain
the unique feature F7,. As shown in Figure 4(a), we perform
hierarchical composition on F,, to enumerate all entity com-
binations from second to the nth order, forming a sequence
of compositional features F},. Each combination is encoded
via an MLP and enriched with positional embeddings.

The resulting F}, is then processed by a structure-aware
self-attention layer with a dedicated attention mask, produc-
ing compositional features Fomp and attention weights w:

Feomp, w = Self-Attention(Norm(F},), Mask) + F}, (10)

where the attention mask encodes compositional priors: (1)
Cross-order subset visibility: higher-order tokens attend to
all their subsets; (2) Same-order intersection visibility: to-
kens of the same order interact only if they share common
objects; (3) Global CLS visibility: the CLS token interacts
with all tokens. This structured attention ensures informa-
tion flows in a semantically consistent and compositionally
aware manner. Its effectiveness is validated in the supple-
mentary material. Finally, a feed-forward network (FFN)
with GeLU activation further refines Feomp.

Adaptive Sampling To avoid early elimination of infor-
mative but low-confidence synergistic causality, we replace
top-N selection with inverse transform sampling. As shown
in Figure 4(b), we compute the cumulative distribution func-

tion (CDF) from attention weights w: CDF;, = Zlf W,
where k denotes the index of the Y, (') combinations.
Then, we uniformly sample N values in [0,1] and use

the inverse CDF to obtain real-valued indices, which are

— > OT
Attn Weights

CDF(n)  Uniformly :{1{ N=3 L >@O>F,
Accumulativel selectN o T

ki
; 1Synergistic mask 1
Attn _ Sum__ - e _samples, ™o mplement! F comp
Weights I 1 i
L Y ¢ 10 \'\>
Composition Index !Redundant mask ! F,

Figure 4: Illustration of the two key components in the CCS
module: (a) compositional structure-aware attention block;
(b) CDF-based adaptive sampling strategy.

mapped to the nearest tokens from cumulative scores. The
selected positions define the binary synergistic mask, while
their complements form the redundant mask. Both are ap-
plied to Fomp via dot-product to yield the synergistic causal
feature F; and redundant causal feature F,., respectively.

Training Strategies

The training of SurdCRL consists of two stages. First, the
STEM module is trained to produce stable representations
of basic causal nodes. Then, DPCI and CCS module are
jointly fine-tuned to extract synergistic, unique, and redun-
dant causal representations under intervention, whose re-
spective classification logits are summed to obtain the fi-
nal prediction. Both stages minimize the prediction loss
L.. = CE(p,p'), where CE is the cross-entropy loss, p
is the predicted result, and p’ is the ground truth label.

Experiments
Experiment Settings

Datasets We conduct extensive experiments on two
benchmark video classification datasets: MSR-VTT (Xu
et al. 2016) and ActivityNet (Caba Heilbron et al. 2015).
Following the same data preprocessing protocols as in prior
works, we split MSR-VTT into 7,010 videos for training and
2,990 for testing. For ActivityNet, the dataset is divided into
10,009 videos for training and 4,515 for testing.

Evaluation Protocol Consistent with prior video classifi-
cation approaches, we employ Top-k (where k = 1, 5) accu-
racy to measure the effectiveness of classification results.

Implementation Details We sample 8 frames per video
following the standard protocol. Pretrained Uniformerv2-B
or InternVideo2-B serve as video encoders with a hidden
size of 768. A SAM2 tracker selects the top 4 consistently
tracked objects. Manhattan distance is used as the similar-
ity metric in STEM. The global clustering dictionary G is
fixed at 512, while the confounder dictionary Z is set to
64 for MSR-VTT and 256 for ActivityNet. In adaptive sam-
pling, we set N=10. Training uses AdamW with cosine de-



MSR-VTT |ActivityNet
Arch Model Top-1 Top-5|Top-1 Top-5
CNN GC-TDN 52.17 82.14|75.42 93.79
TANet 53.47 81.20|76.13 94.06

SSM VideoMamba-M 57.13 83.52|84.38 96.36
ViViT-B 55.79 84.95(80.96 95.46
VideoSwin-B 56.42 84.75|83.80 96.37
Trans. VideoMAEv2-B 58.10 86.50(88.96 97.87

UMT-B 59.92 86.17|89.48 97.64

Internvideo2-B 60.85 87.25190.37 97.80

CNN MViTv2-S 55.14 83.85(83.26 96.83
+ VideoFocalNet-B 56.93 83.97|83.90 96.65
Trans. Uniformerv2-B 60.73 85.75|86.77 96.94

ORViT(Internvideo2-B) [61.24 86.80(90.79 98.22
Trans.| ECRL(Internvideo2-B) [61.36 87.42(91.04 98.47
SurdCRL(Internvideo2-B)|62.17 88.73(92.05 98.64
CNN | ORViT(Uniformerv2-B) [62.07 85.54(88.21 97.82

+ ECRL(Uniformerv2-B) [63.26 86.33|88.74 97.52
Trans.|SurdCRL(Uniformerv2-B)|63.82 86.62|89.95 98.01

Table 1: Performance comparison of SurdCRL and baselines
with different backbone architectures (Arch = Architecture,
SSM = State Space Model, Trans. = Transformer).

cay scheduling, where the learning rate ranges from le-7 to
le-5. The first stage trains 25 epochs with a batch size of 2;
the second trains 15 epochs with a batch size of 32.

Performance Comparison

We compare SurdCRL with 11 video classification meth-
ods, including GC-TDN (Hao et al. 2022), TANet (Liu
et al. 2021), VideoMamba (Li et al. 2024), MViTv2 (Li
et al. 2022), Uniformerv2 (Li et al. 2023a), ViViT (Arnab
et al. 2021), VideoSwim (Liu et al. 2022b), VideoFocalNet
(Wasim et al. 2023), UMT (Liu et al. 2022a), VideoMAEv2
(Wang et al. 2023), and InternVideo2 (Wang et al. 2024b).
We select Uniformerv2 and InternVideo?2 as strong baselines
representing CNN+Transformer and pure Transformer ar-
chitectures, respectively. We also compare against ORViT

(Herzig et al. 2022), a plug-and-play object-centric model,

and ECRL (Wang et al. 2024c), an event-level causal model.

Results are summarized in Table 1.

* Transformer-based models offer superior modeling ca-
pacity. Transformer and CNN+Transformer models out-
perform CNNs and SSMs by better capturing long-range
temporal and fine-grained spatial features.

* SurdCRL generalizes well across diverse architec-
tures. It improves Top-1 accuracy by 3.09% on MSR-
VTT and 3.18% on ActivityNet with Uniformerv2, and
further reaches 92.05% on ActivityNet with InternVideo2,
demonstrating robust spatial-temporal semantic modeling.

* Causal decomposition gives SurdCRL a distinct ad-
vantage. Compared to ORViT, it performs better across
both backbone types by decomposing spatio-temporal ob-
ject interactions into three causal components and mitigat-
ing confounders through causal inference.

* Object-centric causal modeling proves superior. Unlike
ECRL, which builds region-level causal graphs, SurdCRL
achieves significantly better results on ActivityNet, high-

MSR-VTT |ActivityNet
Model Top-1 Top-5(Top-1 Top-5
Base 60.73 85.75(86.77 96.94

+ STEM 62.23 86.00|88.58 97.05

+ STEM + CSA 62.50 86.23|88.94 97.83

+ STEM + CSA + AS 62.80 86.10{89.10 97.79

+ STEM + CSA + AS+BDI  [63.51 86.39|89.65 98.01
+ STEM + CSA + BDI + FDI  |63.18 86.36(89.44 97.83

+ STEM + CSA + AS + BDI + FDI|63.82 86.62(89.95 98.01

Table 2: Ablation study of SurdCRL with Uniformerv2.

Settin MSR-VTT ActivityNet
g Top-1 Top-5 Top-1 Top-5
Zero Mask 63.16 86.30 88.95 97.85

Random Mask 63.26 86.30 89.29 97.95
Segment Mask 63.31 86.10 89.69 98.12

Boxes Mask 63.54 86.13 89.85 98.06
Saliency Mask 63.82 86.62 89.95 98.01

Table 3: Impact of different mask types on the construction
of the confounder dictionary Z in the BDI.

lighting the benefits of fine-grained object-centric causal
reasoning in complex interactions.

Ablation Study

In this section, we analyze the contribution of each module
in our SurdCRL framework, as presented in Table 2. The
following findings can be observed:

¢ Spatial-Temporal Entity Modeling enhances repre-
sentation. The Spatial-Temporal Entity Modeling mod-
ule (+STEM) boosts performance by disentangling fine-
grained visual elements and modeling object-centric rep-
resentation over time to capture core event dynamics.

* Compositional attention and sampling aid causal dis-
crimination. Adding CSA (+STEM+CSA) and Adap-
tive Sampling (+STEM+CSA+AS) improves accuracy
via high-order interaction modeling and causal effect
isolation. Removing sampling (+STEM+CSA+BDI+FDI)
slightly drops performance, showing adaptive selection’s
role in refining causal features.

¢ Dual-path interventions provide robust debiasing.
Incorporating back-door (+STEM+CSA+AS+BDI) and
front-door (+STEM+CSA+AS+BDI+FDI) interventions
improves performance. These methods alleviate the ef-
fects of confounders introduced by observable back-
ground interference and unobservable data biases.

In-depth Analyses

Effectiveness Analyses of the Background Confounders
Dictionary Z We construct the background confounder
dictionary Z in BDI using different spatial masking strate-
gies, as shown in Table 3. The Saliency (Liu et al. 2019)
Mask performs best, as it effectively excludes salient objects
and highlights background confounders. In contrast, Zero
Mask and Random Mask perform poorly due to their lack
of semantic guidance or the introduction of noise. Segment
(Kirillov et al. 2023) Mask and Boxes (Zhang et al. 2022)
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Figure 5: (a) Comparison of different causal components be-
fore and after intervention. (b) Performance trends under dif-
ferent settings of hyper-parameter N in adaptive sampling.

Mask yield improvements by removing object regions, but
still lag behind Saliency Mask, because they also mask out
some background regions that are visually relevant for mod-
eling confounders. These results highlight the importance of
isolating background regions that introduce spurious corre-
lations for effective backdoor intervention.

Causal Effect Analysis of Unique, Synergistic, and Re-
dundant Components We analyze the roles of unique
(U), synergistic (S), and redundant (R) causalities on both
MSR-VTT and ActivityNet (ANET) datasets before and af-
ter intervention, as shown in Figure 5(a). Prior to interven-
tion, all components show similar performance, indicating
that confounders hinder the model’s ability to distinguish
their causal roles. After applying our Dual-Path Causal In-
tervention, overall performance improves. We also observe
that S outperforms U, indicating variable combinations of-
fer extra discriminative cues. However, R and U+R show
slight declines, as R begins to reflect its true function of
capturing redundant cues, which reduces its contribution to
correct classification. In contrast, S+R improves, indicating
that when the expressive power of S is limited, R can pro-
vide useful co-occurrence cues to complement the represen-
tation. These results confirm that our intervention enables
each causal component to better express its true effect.

Effectiveness Analyses of Hyper-parameter N in Adap-
tive Sampling We analyze the impact of the hyper-
parameter NV in adaptive sampling on MSR-VTT and Activ-
ityNet, as shown in Figure 5(b). As N increases from 1, ac-
curacy on both datasets steadily improves and peaks around
N = 10, indicating that larger N helps better distinguish
synergistic and redundant causalities. However, further in-
creasing N causes performance drops. This is because ex-
cessive sampling blurs the boundary between synergistic and
redundant causalities, thereby hindering the model’s ability
to accurately capture their respective causal effects. Notably,
ActivityNet exhibits more pronounced fluctuations when N
is small (up to 5% variation). This suggests that in object-
centric datasets, small N may fail to capture discriminative
object interactions necessary for modeling causality.

Case Study

Visualization of Decision Boundaries under Different
Modeling Paradigms We use t-SNE to compare feature
distributions and decision boundaries (Chen et al. 2023; Yan

& Ao of . &
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Figure 6: Visualization results on representation distribution
under different module combinations.

%
+SurdCRL at

(a) Ground Truth: Disc dog (b) Ground Truth: Mixing drinks

Figure 7: Visualization of attention on sampled frames,
where ORVIT is a transformer-based object-centric method,
“+” indicates the method applied on the base model.

et al. 2025; Li et al. 2025b) across three confusing MSR-
VTT categories, as shown in Figure 6. The base model
yields cluttered features and overlapping boundaries. Mod-
eling three causalities via STEM and CCS offers structural
gains but remains relatively noisy due to the presence of
confounders. In contrast, incorporating intervention through
DPCI produces compact and more discriminative clusters.

Visualization of the Causal Representation by SurdCRL
To evaluate the efficacy of SurdCRL, we compare it against
Uniformerv2 and ORVIT on the ActivityNet validation set
using Grad-CAM (Meng et al. 2020; Qi et al. 2025a), as
shown in Figure 7. Results reveal clear differences in atten-
tion to visual cues. The base model attends to background,
leading to ambiguous focus. ORVIiT shifts attention to rel-
evant areas but still overlooks key interactions. SurdCRL,
by contrast, highlights event-relevant cues like person-dog-
disc engagement in (a) and hand-tool manipulation in (b),
demonstrating stronger causal grounding.

Conclusion

This paper presents SurdCRL, a causal model that lever-
ages object-centric interactions to construct an SCM, a struc-
tural causal model that decomposes causality into synergis-
tic, unique, and redundant components. Experimental re-
sults demonstrate the effectiveness of SurdCRL in focus-
ing on event-relevant object-centric interactions and achiev-
ing precise video understanding. In the future, how to lever-
age the multimodal information in video sequences to con-
struct a spatiotemporal causal representation with aligned
text—visual semantics will be one of our research directions.
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