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Abstract. With the rapid development of the Internet, video compres-
sion and reconstruction have attracted more and more attention as the
use and transmission frequency of video data have increased dramati-
cally. Traditional methods rely on hand-crafted modules for inter-frame
and intra-frame coding, but they often fail to fully exploit the redundant
information of video frames. To address this problem, this paper proposes
a deep learning video compression method which combines conditional
context information and residual information to fully compress intra-
frame and inter-frame redundancy. Specifically, the proposed algorithm
uses conditional coding to provide rich context information for residual
methods. At the same time, residual coding supports conditional coding
in dealing with redundant information. By fusing the video frames gener-
ated by the two methods, information complementarity is achieved. Ex-
perimental results from two benchmark datasets show that our method
can effectively remove redundancy between video frames and reconstruct
video frames with low distortion to achieve better than state-of-the-art
(SOTA) performance.
Keywords: video compression · residual coding · conditional coding.

1 Introduction

With the rapid development of digital media technology, a large amount of video
content has been generated and contributes about 80% of the Internet traffic.
However, the large-scale and high-redundancy properties prevent a large number
of videos from being widely available. Therefore, it is very meaningful and crit-
ical to design an efficient video compression method to reduce the bandwidth
required for video transmission and the storage space on the terminal device.
Meanwhile, this may bring benefits for other vision tasks, such as video object
detection [8, 23] or tracking [9, 40].

Traditional video compression methods [28, 36] are implemented through
hand-crafted modules, however, it has been observed that they cannot achieve
end-to-end optimization and have limited compression efficiency. Recently, deep
learning has found applications in areas such as recommendation [19–22, 24],
⋆ Corresponding author
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Fig. 1. Illustration of RCVC for Video compression with residual coding and condi-
tional coding based on motion information.

classification [3, 13, 14, 16, 32, 34], image generation [11, 12, 29, 33] and federated
learning [17, 27]. Recently, deep learning has demonstrated superior capabili-
ties in computer vision tasks and has also received increasing attention in video
compression tasks [10,15,18,38]. Existing deep learning-based video compression
frameworks mainly include: residual coding framework and conditional coding
framework. Residual coding method [5,18,38] uses residual information to reduce
redundancy between video frames, but the subtraction operation it uses is too
simple to obtain enough effective information. Compared with residual coding,
conditional coding [10] can obtain rich context information, which can help the
model to learn high-frequency information in video frames and supplement the
residual information obtained in residual coding, but conditional coding methods
prone to artifacts.

To address these problems, this paper proposes a dual-channel video com-
pression framework, named RCVC, which combines residual coding and condi-
tional coding. Figure 1 shows the entire framework, which can achieve informa-
tion complementation and mitigate the interference of redundant information.
Specifically, RCVC first uses the motion estimation module to obtain the original
optical flow information, and uses the relevant encoder to obtain the encoded
optical flow information to mine the temporal redundancy between video frames.
Second, RCVC uses the residual coding module to obtain residual information
between video frames to reduce the interference of redundant information. Mean-
while, RCVC uses the conditional coding module to generate rich conditional
information. This enables the compression of residual information and context
information. Finally, RCVC fuses the residual reconstruction and conditionally
reconstructed video frames based on the fusion module to complete the integra-
tion of video frame information. Throughout the process, the entropy encoding
module compresses the potential representation losslessly to create a bitstream.

Experiments are conducted on the Vimeo90K and UVG datasets in terms of
performance comparison and ablation study for the effectiveness of the proposed.
The experimental results show that the proposed method is superior to the
traditional methods and existing state-of-the-art method in PSNR and MS-SSIM
evaluation indexes. In summary, the main contributions of this paper are as
follows:
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– We propose a new video compression framework called RCVC that can fuse
residual and conditional information from sequential video frames for im-
proved video reconstruction.

– We propose a feature fusion module based on residual reconstruction frame
and conditional reconstruction frame, which combines context information
and residual prediction information to achieve information complementarity
and squeeze redundancy.

– Our framework adds information to the reconstruction of video frames, re-
ducing information redundancy and preserving high-frequency information,
achieving better performance than traditional and state-of-the-art methods.

2 Related works

2.1 Image compression

In the past few years, image compression based on deep learning [1,2,4,7,26,31]
has developed rapidly. Image compression technology based on deep learning
has achieved significant performance, surpassing traditional hand-designed lossy
image encoders [30], which has greatly promoted the development of video com-
pression technology. For example, the superprior model proposed by Balle et
al. [1], which helps transform the marginal probability model of encoded sym-
bols into a joint model by introducing additional latent variables as priors. This
reduces redundancy and lowers the bit rate. It is also widely used in motion
codecs and residual codecs for video compression. He et al. [4] proposed to use
checkerboard convolution as a parallel alternative to the serial autoregressive
context model, which has a better degree of parallelism under the same com-
plexity. This provides an idea for us to further speed up the coding speed in
conditional coding video compression framework.

2.2 Video Compression

Traditional video compression algorithms [28, 36] mainly follow the prediction
coding structure and rely on manually designed modules, such as discrete cosine
transform (DCT) and block-based motion estimation, to reduce the spatiotem-
poral redundancy between video frames. Manual methods provide effective com-
pression results under standards such as H.264 [36] and H.265 [28], however,
due to splitting between modules, they are difficult to achieve overall joint op-
timization, and there are compression artifacts and other problems. Therefore,
video compression technology based on deep learning [5, 6, 10, 15, 18, 38, 39] has
received more and more attention. Lu et al. [18] proposed the first end-to-end
rate-distortion optimization video compression framework, which replaced the
key modules in traditional hybrid video codecs with deep neural networks. Hu
et al. [5] proposed a resolution adaptive optical flow compression method, which
considered rate-distortion optimization when encoding motion vectors (MV).
Researchers at Microsoft Research [10] proposed a new coding paradigm called
conditional coding framework, which uses motion estimation and motion com-
pensation modules to generate contexts as conditional guidance for codecs and
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Fig. 2. Overview of our proposed video compression scheme. Motion Estimation and
Motion Compression obtain motion information m̂t from the current frame Xt and
the previous reconstructed frame Xt−1, Conditional Coding extracts video contextual
features based on the motion information m̂t, and Residual Coding evaluates the infor-
mation quality of the reconstructed frame X̂t to remove redundant video information.

entropy models. In this paper, we propose a video compression method (RCVC)
which integrates the feature information obtained by the conditional encoding
method and the residual encoding method, so as to achieve better compression
effect.

3 Method

In this section, we will detail the motion estimation and motion compression
module, residual coding module, conditional coding module, information fusion
module and strategies to train the framework. An overview of our scheme is
depicted in Fig 2.

3.1 Motion Estimation and Compression Module

The process of video compression is as follows, first we feed the current frame Xt

and the previously reconstructed frame X̂t−1 into a neural network-based motion
estimation module to estimate the optical flow. Then we can get two-dimensional
optical flow information, that is, the displacement deviation in adjacent video
frames. In this paper, the motion estimation module is based on the pre-trained
Spynet. The obtained motion vector mt is compressed lossily by the motion en-
coder, and then the optical flow information is reconstructed at the decoding
end to mine the time redundancy between the adjacent two frames. The recon-
structed motion vector is denoted as m̂t. The motion estimation and motion
compression process can be expressed as:

mt = ME
(
Xt, X̂t−1

)
(1)

m̂t = fDn (Q (fEn (mt))) (2)

Where Xt is the current frame. X̂t−1 refers to the previously decoded frame.
ME(·) represents the function of generating the motion vector. mt refers to the
motion vector. Q(·) is the quantization operation. fEn(·) and fDn(·) are motion
encoder and decoder. m̂t represents the reconstructed motion vector.
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3.2 Residual Coding Module

The decoded motion vector m̂t and the previously reconstructed frame X̂t−1

are input into the motion compensation module, which can obtain the predicted
frame X̄2 of the current frame. Subtracting the current frame and the predicted
frame can obtain residual information rt. The residual information enters the
residual encoder, and the quantization operation is realized by adding random
noise, and the quantized information is put into the entropy model to obtain
the estimated potential rate. Finally, the quantified residual information ŷ2 is
entered into the residual decoder to obtain the reconstructed residual r̂t. The
residual coding module can be expressed as:

X̂2 = fRD

(
Q
(
fRE

(
Xt − X̄2

)))
+ X̄2 (3)

Where X̄2 refers to the predicted frame. Q(·) is the quantization operation.
fRE(.) and fRD(·) are residual encoder and decoder. X̂2 represents the recon-
structed frames obtained by the residual method.

3.3 Conditional Coding Module

The purpose of the conditional coding module is to obtain context information
and encode and decode context information. By distorting motion vector and
previously decoded frames, conditional context information contains more di-
mensions than residual information, allowing information in video frames to be
more fully exploited. The context information is compressed into its latent repre-
sentation by the conditional encoder, and then the same quantization operation
is performed, the context information knows the guidance of the conditional de-
coder decoding, and finally the reconstructed context information is obtained.
The conditional coding module can be expressed as:

X̂1 = fCD

(
Q
(
fCE

(
Xt | X̄1

)
, X̄1

))
(4)

Where X̄1 refers to the context information. Q(·) is the quantization operation.
fCE(·) and fCD(·) are conditional encoder and decoder. X̂1 represents the re-
constructed frames obtained by the conditional method.

3.4 Information Fusion Module

To better eliminate redundancy, we combine residual information and confition
information, which complement each other. With the residual coding framework,
we can get a preliminary reconstruction of the original frame, however, due
to the simple subtraction, there will be artifacts and noise. At this time, the
context information provided by conditional coding can help us further refine the
reconstruction frame, so the fusion module we propose is to input the context
information and two reconstruction frames at the same time, and combine the
reference features of multiple frames through the CNN network to achieve better
frame reconstruction. The fusion module can be formulated as:

X̂t = FN
(
X̂1, X̂2

)
(5)



6 Ran Wang et al.

Where X̂t refers to the decoded frame. X̂1 represents the reconstructed frames
obtained by the conditional method. X̂2 represents the reconstructed frames
obtained by the residual method. FN(·) represents the function for fusing the
information from the two video frames.

3.5 Training strategy

In our proposed framework, we optimize the following Rate Distortion (RD)
trade-off realizing using least bitrate to get the best reconstruction quality:

Lt = λ ·D
(
Xt, X̂t

)
+Rm̂

t +Rŷ1

t +Rŷ2

t (6)

Lt is the loss function for the current time step t. λ controls the trade-off be-
tween the distortion D and the bitrate cost R. D(Xt, X̂t) refers to the distortion
between the input frame Xt and the reconstructed frame X̂t, where D(·) de-
notes MSE (mean squared error) or MS-SSIM (multiscale structural similarity)
for different targets. In this paper we select MSE, where D consists of three
parts. R is calculated as the cross-entropy between the true probability and the
estimated probabilities of the latent code. Rm̂

t represents the bit rate used for
encoding the quantized motion vector latent representation and the associated
hyper prior. Rŷ1

t represents the bit rate used for encoding the quantized resid-
ual latent representation and the associated hyper prior. Rŷ2

t represents the bit
rate used for encoding the quantized contextual latent representation and the
associated hyper prior.

4 Experiments

4.1 Experimental Setup

Training dataset. The training dataset is selected from the Vimeo90K dataset
[37], which is 82G in size and contains 89,800 independent video clips with
different contents downloaded from vimeo.com, which cover various scenes and
actions, each with a sequence of 7 video frames and a resolution of 448 x 256 for
the training images.
Test datasets. To evaluate the performance of the proposed method, UVG [25]
and HEVC [28] datasets are used for the evaluation. UVG dataset contains
seven high frame rate videos. The resolution is 1920×1080, where the difference
between adjacent frames is small. The HEVC dataset contains 16 Class B, C,
D, and E videos ranging in resolution from 416×240 to 1920×1080.
Evaluation Metrics. To measure the distortion of reconstructed frames, two
evaluation metrics are used in this paper: PSNR and MS-SSIM [35]. MS-SSIM
can reflect the perception of distortion better than PSNR.
Implementation Details. Our learning rate is set to 1e-4 at the beginning
and then decayed to 1e-5. The batch size was set to 16. For the λ, we set it to
256,512,1024, and 2048, respectively.
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Fig. 3. Comparsion between our proposed method with traditional video compression
methods [28,36] and the deep learning-based video compression methods [10,18,38] on
the UVG and HEVC ClassB datasets.

4.2 Performance Comparison

Figure 3 shows the rate-distortion performance of the traditional video com-
pression methods [28, 36] and the deep learning-based video compression meth-
ods [10, 18, 38] on the UVG and HEVC ClassB datasets. The horizontal coordi-
nate is the bit rate. The higher the bit rate, the larger the volume occupied by
the compressed video, the vertical axis is the compressed mass PSNR, and the
larger the PSNR, the higher the reconstructed video quality. Fixed the horizontal
coordinates, look at the vertical coordinates, the curve means the compression
quality of the image at the same bit rate, and the upper curve above means that
we get better compression quality at the same bit rate. Fixed vertical coordi-
nates, which means that in the bit rate case with the same compression mass,
the curve on the left can get a higher compression rate and a smaller bit rate.
We have made the following findings:

– The video compression method based on deep learning outperforms the tra-
ditional video compression method in both the PSNR and MS-SSIM metrics.
Deep learning can realize the end-to-end joint optimization, which is more
effective than the manually designed traditional video compression.

– From the PSNR evaluation index, the proposed video compression method
(RCVC) for fusion residual encoding and conditional encoding is about 1
dB higher than the DVC, and about 0.2dB higher than the DCVC. Our
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Fig. 4. Ablation Experiments. RCVC_residual verify the role of the residual cod-
ing module. RCVC_FN verify the role of the Feature Fusion Module. RCVC_MC
verify the importance of motion compensation modules in video compression frame-
works. RCVC_context validates the effect of context conditions on reconstructing video
frames.

method can obtain the sample compressed reconstruction quality while sav-
ing the code rate. It shows that by integrating the information of the two
modules, we can greatly reduce the redundancy between frames and reduce
the information loss in the compression reconstruction process.

– From the MS-SSIN evaluation metric, at the same bpp level, our RCVC
method was 0.1 dB higher than the DVC method, slightly better compared
with the DCVC method. It shows that we can get more video frames in line
with our subjective visual perception by integrating information.

Table 1. The BD-Bitrate comparison

Method RCVC DCVC DVC X265 X264

UVG -28.8% -25.3% 17.2% 0.0% 30.3%
HEVC ClassB -29.3% -26% 7.9% 0.0% 35%

Table 1 shows the corresponding BD-Bitrate results. Our proposed RCVC
method saves 28.8% and 29.3% bitrate in UVG dataset and HEVC ClassB
dataset, respectively, which is better than DVC and DCVC, indicating that
we have obtained better bitrate savings through information complementarity.

4.3 Ablation Study

In this section, ablation experiments were performed to validate the role of each
module in our proposed RCVC framework.

The experimental results show that the PSNR at the same bpp level drops
by about 1 dB, indicating that the motion compression module is crucial for us
to obtain more accurate motion information. After the removal of the residual
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(a) Original frame bpp / MS-SSIM (b) DVC 0.16bpp / 0.936

(c) DCVC 0.13bpp / 0.965 (d) RCVC 0.12bpp / 0.972

Fig. 5. Qualitative comparison.The reconstructed frames are from DVC, DCVC, and
our RCVC method. Our method either achieves better visual quality or uses fewer bits.

coding module, the PSNR decreased at the same bpp level by approximately
1 dB, indicating that the residual information can remove the temporal redun-
dancy and thus put attention to the critical information. The PSNR decreased
by about 2dB, indicating that conditional context information can be learned
to high-frequency information in video compression. After removing the fusion
module, the performance of video compression decreased by 1dB, indicating that
our fusion information can assist us in video reconstruction.

4.4 Case Study

Figure 5 shows the reconstructed video frames of different video compression
frameworks, which are from the residual coding framework DVC [18], the con-
ditional coding framework DCVC [10], and the RCVC deep learning video com-
pression framework we propose. The initial frame picks up one of the frames in
the UVG dataset for a high frame rate video ReadySteadyGo.

From the figure, it can be found that the background color of the video frame
reconstructed by the DVC method is quite different from the original picture,
and the blur degree of the object is higher, indicating that its distortion degree
is high. Moreover, from the details of the amplification, the DVC method has ob-
vious compression artifacts, indicating that the image quality obtained by using
only a simple subtraction operation is relatively rough and has noise interfer-
ence. Overall, the image quality reconstructed by DCVC and RCVC methods
is significantly better than that of DVC methods. However, in the recovery of
high-frequency details, the RCVC method is better than the DCVC method.
Specifically, we observed that the contours of distant houses in the images re-
constructed by the RCVC method were more clearly visible, closer to the original
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picture, and their BPP was smaller. This indicates that RCVC obtains both the
rebuild quality and a smaller proportion in memory. It shows that we can not only
effectively remove noise by stitching context information and RGB prediction,
but also achieve better detail restoration through information complementarity.

5 Conclusion

The goal of video compression is to obtain the best reconstruction quality at the
cost of minimal bit rate. Traditional video compression method and compression
method based on a priori deep learning mostly adopt residual coding framework,
theoretically, the current to code pixels may be associated with all the previously
reconstructed pixels, for the traditional encoder, due to the huge search space, it
is difficult to use artificial rules to show the correlation between the pixels. Thus,
the deep learning-based video compression method first generates the prediction
frame from the prior decoded frame, and then calculates the residual difference
between the current frame and the predicted frame. The residue is encoded into a
stream, and the decoder decods the stream to obtain the reconstructed residual,
and finally adds with the predicted frame to obtain the decoded frame. Given
the prediction frame residual frame is a good way to denoising, but it is simple
and effective, but not the optimal solution, because to find the residual operation
is a simple manual design subtraction operation, can not completely remove the
amount of redundancy of the whole frame.

In this paper, we combine residual coding and conditional coding, by obtain-
ing the correlation between high frequency information to better redundancy.
Experiments show that video compression methods integrating residual coding
and conditional coding can achieve better performance. In the future, our work
will combine advanced causal inference [39] technology to infer the invariant fac-
tors that affect video quality. Second, expand it to more challenging settings,
such as federated learning [23].
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