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Cross-domain recommendation (CDR) aims to leverage the correlation of users’ behaviors in both the source and target

domains to improve the user preference modeling in the target domain. Conventional CDR methods typically explore

the dual-relations between the source and target domains’ behaviors. However, this may ignore the informative mixed

behaviors that naturally relect the user’s global preference. To address this issue, we present a novel framework, termed triple

sequence learning for cross-domain recommendation (Tri-CDR), which jointly models the source, target, and mixed behavior

sequences to highlight the global and target preference and precisely model the triple correlation in CDR. Speciically, Tri-CDR

independently models the hidden representations for the triple behavior sequences and proposes a triple cross-domain

attention (TCA) method to emphasize the informative knowledge related to both user’s global and target-domain preference.

To comprehensively explore the cross-domain correlations, we design a triple contrastive learning (TCL) strategy that

simultaneously considers the coarse-grained similarities and ine-grained distinctions among the triple sequences, ensuring

the alignment while preserving information diversity in multi-domain. We conduct extensive experiments and analyses on

six cross-domain settings. The signiicant improvements of Tri-CDR with diferent sequential encoders verify its efectiveness

and universality. The source code is avaliable in https://github.com/hulkima/Tri-CDR.

CCS Concepts: · Information systems→ Recommender systems.

Additional Key Words and Phrases: cross-domain recommendation, contrastive learning, triple learning

1 INTRODUCTION

Personalized recommendation aims to capture user interests and provide appropriate items [25, 35, 50]. Sequential

recommendation (SR), which focuses on discovering user preferences from the essential information of users’
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Fig. 1. Triple sequence learning on the source, target, and mixed behavior sequences in CDR.

historical behaviors, has attracted signiicant attention [20]. However, real-world SR models usually face the

data sparsity problem, since users usually have few behaviors [29, 30, 57]. In practice, making full use of user

behaviors in other domains under the user’s approval is a straightforward and efective solution to the data

sparsity issue in a single domain.

Cross-domain recommendation (CDR) concentrates on transferring useful information from the source domain

to the target domain for performance gains in the target domain [18, 23]. Existing CDR methods mainly focus on

modeling the relations between the source and target domains. EMCDR [34] and SSCDR [19] attempt to learn a

mapping function across the source/target domains via aligned objects. CoNet [18] and MiNet [37] adopt explicit

cross-domain information paths or attention mechanisms for knowledge transfer. Some CDR methods further

build the cross-domain connections via (multi-domain) global graphs [55, 63] or feature correlations [22, 56].

However, most existing CDR models simply focus on the dual relations between the source and target behavior

sequences, ignoring the rich information of the natural mixed (i.e., source+target) behavior sequence.

We deine the mixed behavior sequence in CDR as a complete user behavior sequence containing behaviors

in both the source and target domains which are ordered chronologically. In parallel, we unify all items from

the source and target domains to deine themixed domain and construct distinct embedding representations

for each item within its respective domain and the mixed domain. The left part of Figure 1 shows an example

of the source, target, and mixed behavior sequences in a cross-domain sequential recommendation (CDSR)

scenario. The mixed sequence can relect a user’s complete behavioral pattern and preference evolution more

comprehensively and thus helps to better extract users’ global interests. For example, the sequential behaviors in

domain book andmovie are not consistent and reasonable. Only through the complete mixed sequence containing

sequential behaviors of [book: AlphaGo] → [movie: AI ] → [movie: AI Robot] → [book: Transformers] → [movie:

Car] can we fully understand the user’s sequential action logic. We irmly believe that jointly modeling the mixed

behavior sequence with the original two source/target sequences is beneicial to capture both inter-domain and

intra-domain information in CDR.

In this work, we propose a new paradigm that jointly models source, target, and mixed behavior sequences

in CDR. The challenges are three-fold: (1) How to extract more informative knowledge from source and

mixed sequences? User behaviors in other domains may be good supplements, while it is also common that

users have diferent preferences in these domains. We should maximize the cross-domain information gain while

alleviating the negative transfer from possible noises. (2) How to model the triple correlations among source,

target, and mixed sequences? The mixed sequence is built by source and target behaviors. Both the coarse-

grained similarities and ine-grained distinctions among the three sequences should be carefully considered.

The dual relation learning of conventional CDR models cannot be directly transferred to the triple learning
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task with the additional mixed sequence. (3) How to construct a universal CDR framework that could

smoothly cooperate with diferent types of single-domain SR models? Currently, lots of CDR models rely on

complicated and customized networks for inter-domain interactions, which are hard to be directly adopted with

other single-domain models. We aim to build a universal model-agnostic CDR framework that could be beneicial

with frequently updated single-domain models.

To address these issues, we propose a novel Triple sequence learning for cross-domain recommendation

(Tri-CDR), serving as a model-agnostic framework to jointly model the source, target, and mixed sequences in

CDSR. Speciically, we irst build three sequence encoders for the source, mixed, and target domains, respectively,

which model the intra-domain behavior interactions to get three hidden sequence representations. Next, to

alleviate the irrelevant negative transfer, we design a triple cross-domain attention (TCA) method on three

sequence representations to capture the informative knowledge related to users’ target-domain preferences

and global interests. These attention-enhanced sequence representations are then combined and fed into a

Multi-Layer Perceptron (MLP) to get the inal user representation. We further propose a triple contrastive

learning (TCL) strategy to comprehensively model the correlations among three sequences. TCL adopts three

CL losses to capture the coarse-grained similarities between any two sequence representations of the same user

compared to other users’. More importantly, it further employs a margin-based triple loss among three sequence

representations to model their ine-grained distinctions, keeping the information diversity in three domains. The

advantages of Tri-CDR are: (1) the TCA enables an informative knowledge transfer related to users’ target-domain

preferences and global interests. (2) The TCL helps to better capture the correlations among three domains in

representation learning. (3) Tri-CDR is efective, universal, and easy-to-deploy, which could be conveniently

applied with diferent sequence encoders and additional objectives.

In experiments, we have conducted an extensive evaluation on six cross-domain settings with various base

sequence encoders. As a result, Tri-CDR achieves signiicant improvements on all settings. We also conduct

various ablation studies, universality analyses, parameter analyses, and visualization to verify the efectiveness of

the proposed TCA and TCL. The contributions are summarized as follows:

• We have veriied the signiicance of the triple sequence modeling for comprehensive user interest understanding.

To the best of our knowledge, we are the irst to present the triple sequence learning among source, target, and

mixed behavior sequences in CDR.

• We propose a triple cross-domain attention (TCA) method to enable more positive transfer of knowledge from

the source domain to the target one, which considers both the user’s target-domain preferences and global

interest from the source and mixed behavior sequences.

• We creatively design the triple contrastive learning (TCL) strategy, which not only models the coarse-grained

similarities among multi-domain sequence representations of the same user but also detects the ine-grained

distinctions via a margin-based triple loss.

• We conduct an extensive evaluation to verify the efectiveness of our Tri-CDR on multiple datasets with

diferent base models. The proposed model is efective, universal, and easy-to-deploy.

2 RELATED WORK

Cross-domain Recommendation. Cross-domain recommendation (CDR) is a representative method to alleviate

the data sparsity problem in a single domain with auxiliary information from other domains [23, 31, 34]. The

basic assumption is that users’ behaviors in diferent domains relect the user’s personal preferences to a certain

extent. Classical CDR methods aim to model cross-domain knowledge transfer through directly mapping [19, 34],

multi-domain interaction modeling [2, 37], meta-learning [71, 72], and transformation matrix [18, 23]. Recently,

some CDRmethods also leverage alignment constraint [27, 48], adversarial learning [21] and large language model

[1, 8, 45] for cross-domain knowledge representation and fusion. BiTGCF [26] designs a bi-directional transfer
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learning method to transfer users’ single-domain preferences across two domains. CCTL [62] and AutoTransfer

[7] attempt to adaptively sample informative instances from the source domain and transfer them into the

target domain for leveraging the multi-domain collaborative knowledge while avoiding negative migration As

a specialized scenario, CDSR concentrates more on users’ multi-domain sequential behavior modeling in CDR

[22, 26, 33, 66]. Lots of CDSR methods focus on the shared-account CDSR scenario [11, 12, 33, 49]. �-Net [33] and

PSJNet [43] utilize a shared account ilter unit and a cross-domain transfer unit to share information across both

domains synchronously. MIFN [32] further enriches the sequence representation with knowledge graphs based on

�-Net. TiDA-GCN [12] incorporates the time interval knowledge into attention mechanisms to further enhance

the message-passing and representation learning process. RL-ISN [11] introduces a reinforcement learning-based

solution to reduce the impact of irrelevant domain information in the recent share-account behaviors. DAGCN

[10] designs a domain-aware graph convolution network to learn user-speciic node representations on the

global static graph. CDHRM [49] jointly captures users’ inter-session and intra-session behavioral dynamics from

diferent domains. DDGHM [66] builds a global dynamic graph to model source-target interactions directly, and

jointly predicts via local and global information. DASL [22] proposes the dual embedding and dual attention

strategies to model the correlations between source and target domains’ sequences. UniSRec [17] models the

transferable representations across diferent recommendation domains and platforms via a pre-trained universal

sequence representation model, which is trained with items’ associated description text. DR-MTCDR [13] designs

a uniied disentanglement module to capture the domain-shared and domain-speciic information, with the aim

to transfer the trustworthy information across domains. IESRec [28] relects the users’ diverse characteristics

and reduces domain discrepancy for the item embeddings with the proposed internal multi-interest exploration

module and external domain alignment module. However, existing CDSR methods merely focus on dual relations

of source→target or global→local, ignoring directly modeling the natural mixed behavior sequence with the

correlations among source, target, and mixed domains. Our Tri-CDR is diferent from these works: (a) we directly

model three mixed, source, and target behavior sequences and use them for recommendations simultaneously. (b)

We emphasize the ternary relationship among three sequences for positive knowledge transfer. (c) Tri-CDR is

model-agnostic and easy-to-deploy that can be applied to diferent base sequence encoders and even intra-domain

CL tasks. By doing this, our work can not only learn both complete and independent preferences from mixed,

source, and target behavior sequences but also explain users’ sequential behavior comprehensively through their

interactions.

Sequential Recommendation. Sequential Recommendation (SR) attempts to capture the user’s time-aware

preferences by modeling the sequential dependencies of the user’s historical behavior to recommend the next

item that the user may be interested in. Early works reason users’ short-term preference through the Markov

Chains (MCs) [15, 41]. In recent years, researchers have leveraged the Convolution Neural Network (CNN) [44],

Recurrent Neural Network (RNN) [16] and Transformer [20, 42] to capture users’ preference patterns from users’

historical behaviors. Among them, GRU4Rec [16] leverages the Gate Recurrent Unit (GRU) as the sequential

encoder to learn users’ long-term dependencies. SASRec [20] introduces Transformer for behavior interaction

modeling and is widely used in practice. S3Rec [68] leverage the mutual information maximization principle to

employ four self-supervised objectives among item, attribute, sub-sequence, and sequence. DUVRec [59] encodes

the sequential information with dual-view user representation (item-view and factor-view) to achieve enhanced

SR performance. CL4SRec [57] is one of the state-of-the-art SR models that further enhance the sequential

modeling with various intra-domain CL tasks. In this work, we have successfully adopted Tri-CDR with diferent

sequence encoders, including GRU4Rec, SASRec, and CL4SRec.

Contrastive Learning in Recommendation. As a common self-supervised learning (SSL) method, contrastive

learning (CL) has been widely used in ields of Computer Vision (CV) [5, 14], Natural Language Processing (NLP)

[9, 54] and Recommendation System (RS) [51, 57]. In recommendation, CL is widely applied to session-based
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recommendation [69], multi-behavior recommendation [53], sequential recommendation [39, 57, 68], and cross-

domain recommendation [3, 55]. C2-CRS [69] proposes a coarse-to-ine contrastive learning method to model

user preference with multi-level semantic fusion. MMCLR [53] designs three CL tasks to learn the correlations

among diferent behavior types and modeling views. DUORec [39] proposes a contrastive regularization with the

model-level augmentation to reshape and improve the embedding distribution and sequence representations.

CL4SRec [57] proposes three sequence-based augmentations to build positive pairs in SSL. CCDR [55] designs

an intra-domain CL task and three inter-domain CL tasks for cross-domain knowledge transfer in graph-based

matching. C2DSR [3] conducts a cross-domain infomax objective to enhance the correlation between global and

local representations with domain-speciic global augmentations. Some recent works [52, 53, 61] have conducted

certain triplet losses for more precise representation learning in recommendation. However, existing CL-based

CDR models simply maximize the mutual information of representations in diferent domains, ignoring their

conlicts that may lead to negative transfer and model collapse. To the best of our knowledge, we are the irst to

jointly model coarse-grained similarity and ine-grained distinction via CL in CDR.

3 METHOD

The primary core of this work is to alleviate the negative transfer in CDR, which refers to the phenomenon in

which the knowledge captured from the source/mixed domain adversely afects the recommendation precision

in the target domain. To this end, we design a triple cross-domain attention (TCA) strategy to reweight the

components related to users’ target-domain preferences and global interest within the triple behavior domains

and a triple contrastive learning (TCL) method to accurately understand the triple correlation by modeling the

coarse-grained similarities and the ine-grained distinctions among source, target, and mixed domains respectively.

These two components enable existing CDR methods to alleviate the negative transfer while maintaining the

positive transfer in cross-domain transfer.

3.1 Problem Formulation

We irst deine the source behavior sequence �� = {��1 , ��2 , · · · , ��� } in the source domain � and the target behavior

sequence �� = {��1 , ��2 , · · · , ��� } in the target domain � for each user, where � , � are the source/target historical

behavior lengths, and ��� and ��� are behavior embeddings. In Tri-CDR, we propose a third mixed behavior

sequence �� = {��1 , ��2 , · · · , ���+�} as a supplement to source/target sequences, which is the complete user

behavior sequence containing both source and target behaviors in chronological order. Given three behavior

sequences �� , �� and �� , Tri-CDR tries to recommend the target item ���+1 that will be interacted by this user in

the target domain.

3.2 Overall Framework
In this section, we describe the proposed model-agnostic Triple sequence learning for cross-domain recommen-

dation (Tri-CDR) framework, which jointly models source, target, and mixed behavior sequences to improve

CDR. Speciically, we irst model the source, target, and mixed behavior sequences through three base sequence

encoders separately to generate their corresponding hidden sequence representations in three domains. Then we

propose a triple cross-domain attention (TCA) method to highlight informative knowledge related to the user’s

target-domain preferences and global interests in building three domains’ sequence representations, mitigating

negative knowledge transfer. To better model the correlations among multi-domain sequence representations, we

design a novel triple contrastive learning (TCL) strategy with two contrastive constraints: (a) Coarse-grained

similarity modeling, which enables source/target/mixed sequence representations from the same user to be more

similar than other users’. (b) Fine-grained distinction modeling, which recognizes users’ diversiied preferences
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Table 1. Notations and Descriptions of Tri-CDR.

Notation Description (Superscripts Represent Domains)

�, � Length of the user behavior in source and target domain.

� Embedding size.

�,� ,� Source domain, target domain and mixed domain.

�� , �� , �� User behavior sequence of source, target and mixed domain.

��� , �
�
� , �

�
� The i-th behavior in source, target and mixed domain.

��� , �
�
� , �

�
� The i-th behavior embedding in source, target and mixed domain.

�� , �� , �� The hidden behavior representation matrix in source, target and mixed domain.

��� , �
�
� , �

�
� The i-th hidden behavior representation in source, target and mixed domain.

�� , �� , �� Sequence representation of source, target and mixed domain.

��� , �
�
� , �

�
� The attention weight of source, target and mixed domain.

P� (·), P� (·), P� (·) The domain-speciic projector of source, target and mixed domain.

�̄�� , �̄
�
� , �̄

�
� Projected sequence representation of source, target and mixed domain.

�� User inal representation.

���,�+1 The ground-truth probability between user � and item ���+1.

�̂��,�+1 Predicted probability between user � and item ���+1.

L�� Contrastive informative regularizer.

L��� Coarse-grained similarity modeling regularizer.

L��� Fine-grained distinction modeling regularizer.

L��� The binary cross-entropy loss regularizer.

L The overall regularizer.

in diferent domains to keep the information gains brought by the source and mixed sequences. TCL helps to

learn more informative and accurate multi-domain representations to capture user preferences comprehensively.

The overall structure of Tri-CDR is illustrated in Fig. 2, and the notations and their corresponding descriptions

of Tri-CDR are illustrated in Table. 1. In the following subsections, we irst present the base sequence encoder

of the proposed Tri-CDR which is implemented with the self-attention module. Subsequently, we introduce

TCA, which emphasizes the user’s target-domain preferences and global interest in triple domains. And then, we

describe TCL to precisely model the user’s coarse-grained similarities and ine-grained distinctions among triple

sequences. Finally, we present the discussions on the proposed Tri-CDR.

3.3 Base Sequence Encoder

Inspired by the success of the self-attention mechanism in sequential recommendation, we apply SASRec [20] as

our sequence encoder for all domains. Without losing generality, for the target domain sequence �� , we build the

input matrix �� ∈ R�×� , where each behavior embedding ��� consists of a learnable item ID embedding and a

position embedding, and � is the embedding size. Then the sequence encoder transposes �� into three matrices

ACM Trans. Inf. Syst.
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Fig. 2. The overall structure of Tri-CDR. TCA highlights informative knowledge related to users’ target-domain preferences

and global interests, while TCL captures the triple correlations among three domains for beter cross-domain knowledge

transfer.

by linear projections, and feeds them into the attention method as query, key, and value, which can be deined as:

�̂�
= Atention(�,� , � ) = Sotmax

(

���
√
�

)

� . (1)

where � = ���� ,� = ���� , � = ���� , and �� ,�� ,�� denote the linear projections respectively.

Meanwhile, we conduct a point-wise feed-forward network to get the hidden behavior matrix �� of the target

domain as follows:

��
= ReLU

(

�̂��1 + �1

)

�2 + �2, �� ∈ R�×� . (2)

where�1,�2, �1, �2 denote the weight matrices and bias vectors respectively. The hidden matrices of source/mixed

sequences�� ,�� are similarly constructed with the intra-domain behavior interactions. Note that the same items

in diferent domains are allocated with diferent behavior embeddings for better representation capacity, avoiding

too homogeneous representations across diferent domains. It is also worth noting that we can conveniently

adopt other sequential models as our sequence encoder or even with other intra-domain CL tasks in Tri-CDR (we

have tested GRU4Rec [16] and CL4SRec [57], see the universality analysis in Sec. 4.6).

3.4 Triple Cross-domain Atention

It is intuitive that there exist subtle variations in preferences between diferent domains, even for the identical user.

Consequently, a mechanical and unreined transference of the source domain knowledge to the target domain

can potentially introduce bias into the target recommender’s optimization. We argue that diferent historical

behaviors in three domains should have diferent importance for the target-domain prediction. Precisely, We

expect that the information emphasized in three sequences should be (a) relevant to the user’s target-domain

preferences, so as to it the target-domain prediction task, and (b) relevant to the user’s global interests, so as

to understand the user’s comprehensive preferences and bring in more information gain. Hence, we propose a

Triple Cross-domain Attention (TCA) on three hidden behavior matrices to enable the recommender to focus on

the relevant and informative knowledge in the triple domains while iltering out noisy information selectively,

thereby maintaining more positive transfer and alleviating the negative transfer.

In essence, TCA is proposed to highlight valuable information, accelerate positive knowledge transfer, and

enable the recommender to reweight diferent components of the users’ behaviors in triple domains. TCA functions
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when we aggregate the hidden behavior embeddings in �� , �� , �� to get three sequence representations �� ,

�� , �� of the source, target, and mixed domains. Speciically, for the source domain, given ��
= {��1, · · · ,��� }

and the target item ���+1, TCA calculates the attention weight ��� of the �-th behavior’s hidden embedding ��� in

the source sequence as:

��� = f (��� ,���+�,��� ) = MLP�
(

��� ∥��� ∥��� −��� ∥��� ⊙��� ∥���+�
)

. (3)

Here, ⊙ performs element-wise vector product, ∥ denotes the concatenation operation, and MLP� (·) is a two-layer
fully-connected network followed by PReLU activation functions. ��� and ���+� denote the last hidden behavior

embeddings in target and mixed domains. This attention setting is inspired by [67], while we adopt ��� to indicate

the user’s current target-domain preference instead of using diferent candidate target item’s embedding ���+1,

since it is much more eicient in online serving. Moreover, we also highlight ���+� in this attention, since we

assume the hidden embedding of the last mixed behavior implies the user’s global interests, which are good

supplements to the target-domain preference. Based on this, we aggregate diferent behavior hidden embeddings

��� to get the source sequence representation �� as:

�� =

�︁

�=1

Sotmax
(

���

)

��� . (4)

Similarly, we also have �� =

∑�+�
�=1 Sotmax

(

f (��� ,���+�,��� )
)

��� and �� =
∑�
�=1Sotmax

(

f (��� ,���+�,��� )
)

��� for the

mixed and target sequence representations. With TCA, we can not only directly focus on the information related to

the user’s target-domain preferences, but also keep aware of the user’s global interests for a more comprehensive

positive transfer from the three domains. By highlighting the practical application of TCA in exploring the user’s

multiple preferences, it assists the recommender in mitigating the intricate negative information from source

and mixed domains during cross-domain transfer, consequently ensuring precise modeling of multi-domain user

preferences.
3.5 Triple Contrastive Learning

Compared to classical CDR models that learn dual relations, Tri-CDR faces a more challenging task to compre-

hensively understand triple correlations among source, target, and mixed sequences. In this work, we propose a

novel Triple Contrastive Learning (TCL) to smartly model the correlations among three sequence representations.

Precisely, we design two CL tasks in TCL, including the coarse-grained similarity modeling and the ine-grained

distinction modeling. The former CL task aims to capture the coarse-grained similarities between any two

sequence representations of the same user compared to others. In contrast, the latter is conducted to model the

ine-grained distinctions among users’ multi-domain sequence representations, keeping the diversity across

diferent domains to enhance information gains.
3.5.1 Coarse-grained Similarity Modeling (CSM). It is natural that a user’s behavior sequences in diferent

domains should share common general preferences. Hence, we design a coarse-grained similarity modeling

(CSM) to model the coarse-grained similarities among three domains’ sequence representations of the same

user. Speciically, we project the sequence representations �� , �� , �� into the same space via domain-speciic

projectors P� (·), P� (·), P� (·) (we build these projectors via one-layer MLPs). After obtaining the projected

sequence representations �̄� = P� (�� ), �̄� = P� (�� ), �̄� = P� (�� ) of three domains, we calculate the contrastive

loss L�� with any two of them as positive instances in CL. Formally, for �̄� and �̄� , we follow the classical

InfoNCE [5] as:

L��
(

�̄� , �̄�
)

= −
︁

�∈�
log

exp(sim
(

�̄�� , �̄
�
�

)

/�)
∑

�∈�\� exp(sim
(

�̄�� , �̄
�
�

)

/�)
. (5)

� denotes the sampled batch, �̄�� denotes the projected sequence representation for item � in target domain, �

denotes the temperature coeicient, and sim
(

�̄�� , �̄
�
�

)

=

(�̄�
�
)� (�̄�

�
)

∥ �̄�
�
∥ ·∥ �̄�� ∥ denotes the cosine similarity. Finally, the CSM
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loss L��� is formulated with three positive pairs as:

L��� =

︁

�

(�1L��
(

�̄� , �̄�
)

+ �2L��
(

�̄� , �̄�
)

+ �3L��
(

�̄� , �̄�
)

), (6)

where �1, �2, and �3 denote the loss weights respectively.

3.5.2 Fine-grained Distinction Modeling (FDM). CSM assumes that a user’s domain-speciic preferences should

be more similar, and monotonously pulls the multi-domain representations of the same user closer. It functions

well in general, while there does exist ine-grained distinctions across the user’s preferences in triple domains.

Over-optimizing L��� may inevitably cause the model to collapse to the proximal point, where the source and

mixed sequences cannot provide additional information gain for their too-similar target sequence, putting the

cart before the horse.

To address this issue, we look back to the composition of the proposed mixed sequence, whose subsequences

contain both source and target sequences. Hence, it is intuitive that the source-mixed and target-mixed distances

should be smaller than the source-target distance. Under this intuition, we propose a new CL task named ine-

grained distinction modeling (FDM) based on a margin-based triplet loss. We intuitively assume the distance

between �̄� and �̄� should be larger than the distance between �̄� and �̄� by at least the margin � . Formally, we

deine the FDM loss L��� as:

L��� =

︁

�

max
{

�
(

�̄� , �̄�
)

− �
(

�̄� , �̄�
)

+ �, 0
}

, (7)

where �
(

�̄�,�̄�
)

measures the similarity between �̄� and �̄� , which is calculated as the �2 distance. � denotes the

margin to be controlled. Through jointly optimizing L��� and L��� , Tri-CDR could intelligently ind a good

balance in ensuring the alignment among a user’s multi-domain preferences while keeping the ine-grained

distinctions to bring in more information gain from other domains.

3.6 Optimization Objectives

After TCA and TCL, we concatenate the triple sequence representations �� , �� , �� and feed them into the

following multi-sequence aggregation layer to generate the user inal representation �� , which is formulated as

follows:

�� = MLP� (�� ∥ �� ∥ �� ). (8)

MLP� (·) denotes a two-layer fully-connected network with the LeakyReLU activation. Finally, we calculate the

predicted probability �̂� = (�� )⊤���+1 of the user � on the target item ���+1 with the inal user representation ��

and the item embedding ���+1. We formulate the binary cross-entropy loss L��� as follows:

L��� =−
︁

(�,� ) ∈��

[

���,� log �̂
�
�,�+

(

1−���,�
)

log
(

1−�̂��,�
)]

(9)

where �� is the target-domain training set, ��
�,�

= 1 and ��
�,�

= 0 denote the positive and negative samples

respectively, and �̂�
�,�

denotes the predicted probability of (�,�). To optimize across triple sequences in conjunction

with CL tasks, the overall objective function L is a linear combination of L��� , L��� and L��� as:

L = L��� + ����L��� + ����L��� (10)

where ���� and ���� denote the loss weights of L��� and L��� .
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Algorithm 1 The Tri-CDR Algorithm.

Input: User behavior sequences �� , �� and �� of source, target and mixed domain; The pre-trained sequence

encoder parameters �� , �� and �� ; The temperature coeicient � ; The loss weight ���� and ���� of L���
and L��� ; The loss weight �1, �2 and �3 of three CL tasks; The triple margin � ; Batch size �; User set U;

Training set R.
Output: The Tri-CDR model parameter � ∗ and the predicted probability between user � and item � for recom-

mendation.

## Training Procedure

while not converged do :

for � = {1, 2, · · · , |R |/�} :

Compute the hidden behavior representation matrices �� , �� , �� via three base sequence encoders;

Dynamically Learn the attention weights ��� , �
�
� , �

�
� of each behavior according to Eq.(3);

Generate the sequence representation �� , �� , �� via Eq.(4);

Obtain the projected sequence representations �̄� , �̄� , �̄� with three domain-speciic projectors

P� , P� , P� ;

Calculate the coarse-grained similarity modeling regularizer L��� with Eq.(6);

Calculate the ine-grained similarity modeling regularizer L��� with Eq.(7);

Generate the user inal representation �� with Eq.(8);

Calculate the binary cross-entropy loss regularizer L��� with Eq.(9);

Calculate the overall regularizer L via Eq.(10) and update the model parameters � with ∇�L.

end for

end while

## Inference Procedure

for � = {1, 2, · · · ,U} :

Select user �’s behavior sequences ��� , �
�
� and ��� of source, target and mixed domain;

Compute the hidden behavior representation matrices ��
� , �

�
� , �

�
� via three base sequence encoders of

user �;

Dynamically Learn the attention weights ���,� , �
�
�,� , �

�
�,� of user �’s each behavior according to Eq.(3);

Generate the sequence representation ��� , �
�
� , �

�
� via Eq.(4);

Calculate the user inal representation �� via Eq.(8);

Compute the predicted probability �̂�
�,�

between user � and the target item �� .

end for

return The predicted probability of user � and target item � .

3.7 Training Strategy of CDSR

Training Tri-CDR from scratch sometimes may incur the diiculty in model convergence in the early training

stage, leading to unstable and unsatisfactory performance. This is mainly caused by the feature space conlicts

between the source and target domains in CDR. We also observe the same phenomenon in other CDSR models.

To address this issue, we conduct a two-step training strategy (i.e., single-domain pre-training + cross-domain

ine-tuning) to achieve more stable and satisfactory performances. Speciically, we irst pre-train two source/target

SASRec models with their corresponding single-domain losses. Next, the pre-trained SASRec parameters are

used as the initialization of Tri-CDR (and other CDR baselines). All parameters are then tuned via � in Eq. (10).

Through this, CDR models could be trained more efectively and stably. The complete worklow of Tri-CDR is

comprehensively outlined in Algorithm 1.
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Table 2. Comparison among representative cross-domain sequential recommendation algorithms.

Algorithms
Domain utilization Contrastive Learning

Implementation

Sequence modeling

universalityMixed Domain Source Domain Target Domain

�-Net [33] × ✓ ✓ × ×
DTCDR [70] × ✓ ✓ × ×
DDTCDR [23] × ✓ ✓ × ×
DASL [22] × ✓ ✓ × ×

DDGHM [66] ✓ × ✓ intra-CL ×
C2DSR [3] ✓ × ✓ inter-CL ×

Tri-CDR (ours) ✓ ✓ ✓ Both intra- and inter- CL ✓

3.8 In-depth Model Discussions

In this section, we undertake a comparison between the proposed Tri-CDR and the existing CDSR methods

speciically tailored for the domain utilization, CL implementation, sequencemodeling universality and complexity

analyses, intending to analyze its novelty and efectiveness. The related comparison results are illustrated in

Table. 2.

3.8.1 Comparison with Existing CDR Methods in Domain Utilization. CDSR aims to predict the next

item that the user will be consumed in the target domain by leveraging the historical behavior sequence in the

source domain. Therefore, the pioneer CDSR methods primarily focus on exploring how to achieve meaningful

information transfer with the leverage of user’s behavior in the source domain [22, 23, 33, 70]. With the profound

advancement of CDSR, some studies attempt to incorporate the mixed behavior sequence containing both source

and target behaviors in chronological order to model the user’s global interests. However, these studies are

speciically designed for Cross-domain Session-based Recommendation [49] and Cross-domain Share-account

recommendation [33], and may not be directly applicable to CDSR scenarios. Recently, DDGHM [66] and C2DSR

[3] introduce the mixed behavior sequence into CDSR through the utilization of the global graph, yielding

promising performance. Nevertheless, the aforementioned approaches typically model users’ global and local

interests separately with the mixed and target behavior sequences to capture their dynamic correlations. Despite

the commendable performance of these methods, it overlooks the modeling of the user’s preference in the source

domain, which is the coherent sequence with its internal logic and equally critical for CDSR. Consequently, it

may result in sub-optimal performance.

In contrast, the proposed Tri-CDR jointly models the user’s dynamic preference from the source, mixed and

target domain, which facilitates the lexible and convenient integration of all available information into CDSR

scenarios. Meanwhile, Tri-CDR proposes the Triple Cross-domain Attention mechanisms and Triple Contrastive

Learning strategies for negative iltering, enabling ine-grained inter-domain relationship modeling and precise

cross-domain positive knowledge transfer. The source, mixed and target domains are beneicial in CDR, while it

is non-trivial to make full use of them. More detailed experimental results and analyses of the domain utilization

are described in Sec.4.7.

3.8.2 Comparison with Existing CDR Methods in Contrastive Learning Implementation. As a self-

supervised learning strategy, CL has been widely applied to collaborative iltering [24], multi-media recommenda-

tion [51], and sequential recommendation [39, 57]. Recently, some studies [3, 55, 66] have also introduced CL into

CDR. DDGHM [66] designs an intra-domain contrastive metric with the random item augmentation operator to

enhance representation learning and alleviate data sparsity issues. However, despite employing random sequence-

based CL augmentation for inferring informative representation, DDGHM’s intra-CL method does not explicitly

consider the knowledge transfer and inter-domain correlation necessary for cross-domain modeling. C2DSR [3]

is the most related CDR model, which develops an inter-domain contrastive infomax objective to improve the
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correlation between the domain-aware prototype representations and corresponding corrupted representations.

However, its inter-CL objective over-maximizes the mutual information of the individual representations between

the mixed and target domain, disregarding the potential similarity conlicts that may result in optimization

collapse. Both coarse-grained similarity (refer to positive transfer) and ine-grained distinction (refer to negative

transfer) should be considered in inter-domain CL.

Rather than solely relying on inter-CL between two domains, Tri-CDR incorporates all three domains and

carefully model their triple relationships in contrastive tasks, ensuring that the optimization does not excessively

collapse and get suicient and accurate training. Precisely, Tri-CDR creatively proposes the coarse-gained simi-

larity modeling and the ine-gained distinction modeling to comprehensively understand the triple correlations.

The former captures the coarse-gained similarities between any two single-domain sequences of the same user to

enable efective representation learning, while the latter maintains the robust cross-domain positive transfer

through modeling the ine-gained distinction among triple sequences (see Sec. 4.5). Moreover, as an efective and

model-agnostic framework, Tri-CDR is able to bring the SOTA CL-based SR models (intra-domain CL) into the

sequence modeling and achieves signiicant improvements in CDR by leveraging the combined interplay of both

inter-CL and intra-CL strategies (see Sec. 4.6).

3.8.3 Comparison with Existing CDR Methods in Sequence Modeling Universality. Behavior sequence

modeling is essential in SR. Lots of novel techniques such as attentionmechanisms [6, 40], side information [40, 58],

and contrastive learning [57, 68] have been continuously proposed and veriied to improve the performance of

single-domain SR models. Amounts of CDR experiments have revealed that more recent and powerful single-

domain SR models are able to outperform conventional CDSR algorithms [4, 13, 21, 66], which is also observed in

our experiments (see Sec. 4.4). However, most existing CDSR models commonly incorporate simple SR models as

their sequence encoders to verify their CDR strategies, or design complicated and customized networks to learn

multi-domain interactions tailored to their speciic cross-domain settings, overlooking whether the proposed

algorithm possess the lexibility to adapt to diferent (current or future-updated) strong sequence encoders.

Diferent from them, we argue that the universality of a CDSR algorithm with diferent sequence encoders

is a crucial factor in guaranteeing the sustained efectiveness of the proposed framework, since real-world

systems always prefer simple and universal methods. In this work, we try our best to enhance the universality

and maintain the simpliication of TCA and TCL without customized designs in the single-domain sequence

modeling (see 4.6 for detailed results). Therefore, Tri-CDR could leverage possible advancements in single-domain

sequence modeling (including model evolution in the future), thereby extending the lifecycle of our proposed

CDSR algorithms.

3.8.4 Complexity Analyses. In this section, we analyze the complexity of Tri-CDR and compare it with classical

SR models (SASRec [20], CL4SRec [57]) and CDSR algorithms (DASL [22], C2DSR [3]). The space complexity of

the proposed Tri-CDR is largely determined by its sequence encoder. For example, apart from the mandatory

space allocation for training three SASRec models (for source, mixed and target domains respectively), Tri-CDR

(SASRec) only requires a limited number of MLPs (mentioned in Sec. 3.4 and 3.5) to be additionally trained. That

is, Tri-CDR does not introduce excessive trainable parameters, which renders the space complexity of Tri-CDR

akin to its sequence encoder.

As for the time complexity in model training, the base sequence encoders serve as the pivotal component of the

CDSR tasks, and dominate its time complexity. Since diferent sequence encoders have diferent time complexity,

we provide the time complexity of the used sequence encoders as follows: SASRec [20]: O((�2 +�)� |� |), CL4SRec
[57]: O((�2 + � + �)� |� |), where � denotes the length of the behavior sequence, |� | denotes the number of

users, � is the size of mini-batch. Meanwhile, we also analyze the time complexity of the state-of-the-art CDSR

algorithms which are armed with dual-attention mechanism (DASL [22]), graph representation learning and

contrastive learning paradigm (C2DSR [3]). That is, the time complexity of DASL and C2DSR is O((�2 + �)� |� |)
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Table 3. Statistics of three CDR datasets with six domains.

Dataset Amazon Toy & Game Amazon Book & Movie Douban Book & Music

Domain Toy Game Book Movie Book Music

Users 7,996 7,996 28,531 28,531 4,580 4,580

Items 37,868 11,735 239,042 38,185 64,340 57,586

Records 114,487 82,871 625,692 349,918 224,117 278,855

Density 0.0378% 0.0883% 0.0092% 0.0321% 0.0761% 0.1057%

and O((�2 + � + � + |R� | + |R� |)� |� |) respectively, where |R� | and |R� | denotes the number of nonzero entries

in the Laplacian matrix in the mixed and target domain respectively. In contrast, we performed a comprehensive

analysis of the time complexity of Tri-CDR on diferent sequence encoders, revealing that both Tri-CDR (SASRec)

and Tri-CDR (CL4SRec) share the identical time complexity as O((�2 + � + �)� |� |).
The aforementioned analyses indicate that Tri-CDR has asymptotic similar time complexity with CL4SRec

in training. It is worth noting that Tri-CDR does not conduct TCL in the inference phase. Therefore, its online

inference item complexity (which is the central metric considered in practical usages of recommendation models

rather than the training time complexity) is comparable with DASL in magnitude. Moreover, Tri-CDR exhibits a

marginal enhancement in training eiciency in the authentic recommender systems with a more extensive user

and item scale, while its online serving eiciency is still parallel with other CDRmodels. These complexity analyses

underscore Tri-CDR’s scalability on large-scale real-world recommender systems. Therefore, the proposed Tri-

CDR is able to employ cross-domain positive transfer and obtain high-quality sequence representations with

only tolerant additional time and space cost.

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions: (RQ1): How does

Tri-CDR perform against the state-of-the-art SR and CDSR baselines (see Sec. 4.4)? (RQ2): How do diferent

components of Tri-CDR beneit its performance (see Sec. 4.5)? (RQ3): Is Tri-CDR still efective with other base

sequence encoders (see Sec. 4.6)? (RQ4): Does the introduction of additional domains lead to reasonable perfor-

mance improvements? (see Sec. 4.7)? (RQ5): How do some important hyper-parameters afect the performance of

Tri-CDR (see Sec. 4.8)? (RQ6): How do the the coarse-grained similarity modeling and ine-grained distinction

modeling contribute to the multi-domain representation learning in CDR(see Sec. 4.9)?

4.1 Datasets

To verify the efectiveness and universality of Tri-CDR, we conduct extensive experiments on six real-world

CDR settings with four domains from Amazon [36] and two domains from Douban [65]. Following [22, 66], we

select Amazon Toy & Game, Amazon Book & Movie and Douban Book & Music to form six CDR tasks. Amazon Toy

& Game, Amazon Book & Movie and Douban Book & Music include the review records from October 2000 to

October 2018, from December 1996 to September 2018 and from July 2005 to December 2011 respectively. These

three cross-domain datasets are pre-processed via the same method following classical CDR studies [21, 22].

Speciically, we build three user behavior sequences on the source, target, and mixed domains in chronological

order. We set the last interacted item of each user as the test set and the penultimate interacted item as the valid

set based on the Leave-one-out splitting method [42, 64]. We randomly select the users that have behaviors in

both domains, ilter out users having less than 3 behaviors, and treat all rating records as interacted behaviors

[19, 38]. The detailed statistics are shown in Table 3.
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4.2 Baselines

In this section, we compare Tri-CDR with three representative single-domain SR models and seven cross-domain

SR models. Note that all baselines have been suiciently tuned on diferent cross-domain settings to achieve their

optimal performances. These compared baselines are elaborated as follows:

• GRU4Rec. GRU4Rec [16] is a classical session-based recommendation method encoding the item sequence via

GRU.

• SASRec. SASRec [20] is a widely-used sequential recommendation model. It applies the self-attention mecha-

nism to model behavior interactions in sequential recommendation.

• CL4SRec.CL4SRec [57] is the SOTACL-based SRmodel, which adopts three sequence augmentation approaches

to generate self-supervised signals via three intra-domain CL tasks.

Beneiting from the implementation of the self-attention mechanism, SASRec achieves a signiicant improvement

relative to RNN-based algorithms in SR. For fair comparisons with Tri-CDR, we use SASRec as the base sequence

encoder for all cross-domain SR baselines (noted as Model+). They also share the same features and historical

behaviors:

• EMCDR. EMCDR [34] is the classical CDR method, which utilizes a multi-layer perceptron to imitate the

nonlinear mapping function across source and target domains.

• SASRec(S+T). SASRec(S+T) is a straightforward CDSR method based on SASRec. It irst generates the source

and target sequence representations respectively, then concatenates and feeds them into an MLP for the inal

prediction.

• CoNet+. CoNet [18] introduces the cross connections and a joint objective function across source and target

domains to model the dual knowledge transfer.

• DTCDR+. DTCDR [70] is a pioneer dual-target CDR method, which proposes an adaptable embedding sharing

strategy to combine and share the user embeddings across domains based on the multi-task learning paradigm.

• DDTCDR+. DDTCDR [23] designs a latent orthogonal mapping function for extracting and transferring user

preferences between two related domains while preserving cross-domain relations across diferent latent spaces

in an iterative manner through a dual-transfer method.

• DASL+. DASL [22] constructs dual embeddings to extract the user’s independent preferences and captures

the user’s cross-domain preference through a dual-attention learning mechanism. With its inherent structural

superiority, DASL facilitates smooth incorporation of diferent sequence encoders. After replacing the sequence

encoder from GRU to SASRec, DASL further achieves the promising performance, establishing itself as a strong

baseline in CDSR.

• C2DSR+. C2DSR [3] is the SOTA model in CDSR, which leverages a efective graph neural network to exploit

the inter-domain co-occurrence collaborative relationship and proposes an contrastive infomax objective to

capture and transfer the user’s cross- domain preferences via the mutual information maximization mechanism.

4.3 Experimental Setings

We implement the above methods using PyTorch with Python 3.8.10. Leveraging the empirical knowledge, we

conduct a comprehensive grid search across all hyper-parameters and select the optimal parameters for Tri-CDR

and each baseline. In the parameter sensitivity analyses, we delineate the nuanced variations in the performance

trend of Tri-CDR concerning several pivotal parameters (see Sec.4.8). For fair comparisons, we take Adam as

the optimizing method, and the learning rate and the batch size are set as 0.0005 and 120. We initialize model

parameters randomly using the Xavier method. We conducted dimension experiments in {16, 32, 64, 128} on each

baseline and report their optimal performance. For Tri-CDR, we deine the embedding size as 64. We adopt the

same maximum sequence length for each model as 200 on all datasets. Due to the inherent diversity in user

behaviors’ sparsity and data distributions, the range of hyper-parameters difers across diferent cross-domain
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Table 4. Results on cross-domain recommendation on Amazon platform. All improvements are significant (p<0.05 with paired

t-tests).

Datasets Algorithms N@5 N@10 N@20 N@50 HR@5 HR@10 HR@20 HR@50 AUC

GRU4Rec 0.1305 0.1551 0.1783 0.2172 0.1860 0.2624 0.3549 0.5533 0.5613
SASRec 0.1853 0.2097 0.2321 0.2633 0.2505 0.3260 0.4149 0.5734 0.5821
CL4SRec 0.1898 0.2143 0.2359 0.2673 0.2577 0.3338 0.4199 0.5795 0.5828
EMCDR 0.1397 0.1705 0.1964 0.2322 0.2015 0.2972 0.4000 0.5819 0.5969
CoNet+ 0.1971 0.2208 0.2428 0.2739 0.2657 0.3392 0.4266 0.5838 0.5840

SASRec(S+T) 0.1948 0.2189 0.2397 0.2715 0.2610 0.3355 0.4184 0.5793 0.5815
DTCDR+ 0.1963 0.2191 0.2404 0.2724 0.2646 0.3351 0.4196 0.5812 0.5777
DDTCDR+ 0.1959 0.2185 0.2404 0.2723 0.2617 0.3316 0.4186 0.5800 0.5768
DASL+ 0.1976 0.2206 0.2418 0.2740 0.2624 0.3338 0.4183 0.5810 0.5788

C2DSR+ 0.1964 0.2213 0.2433 0.2744 0.2671 0.3442 0.4314 0.5883 0.5878
Tri-CDR(SASRec) 0.2069 0.2312 0.2528 0.2832 0.2797 0.3548 0.4405 0.5945 0.5913

Game
❴

Toy

Tri-CDR(CL4SRec) 0.2062 0.2313 0.2525 0.2836 0.2794 0.3576 0.4418 0.5989 0.5895

GRU4Rec 0.2682 0.3053 0.3366 0.3726 0.3697 0.4839 0.6079 0.7894 0.7510
SASRec 0.3350 0.3726 0.4003 0.4297 0.4465 0.5631 0.6723 0.8204 0.7868
CL4SRec 0.3362 0.3720 0.4007 0.4296 0.4474 0.5582 0.6715 0.8166 0.7807
EMCDR 0.2395 0.2797 0.3128 0.3520 0.3403 0.4649 0.5963 0.7936 0.7513
CoNet+ 0.3371 0.3725 0.4005 0.4293 0.4479 0.5573 0.6677 0.8127 0.7784

SASRec(S+T) 0.3436 0.3803 0.4088 0.4380 0.4566 0.5702 0.6828 0.8295 0.7931
DTCDR+ 0.3315 0.3682 0.3964 0.4253 0.4423 0.5558 0.6676 0.8129 0.7803
DDTCDR+ 0.3355 0.3708 0.3989 0.4282 0.4473 0.5566 0.6677 0.8146 0.7832
DASL+ 0.3368 0.3734 0.4010 0.4299 0.4482 0.5613 0.6706 0.8155 0.7819

C2DSR+ 0.3292 0.3691 0.3985 0.4277 0.4475 0.5704 0.6868 0.8342 0.7951
Tri-CDR(SASRec) 0.3514 0.3892 0.4182 0.4458 0.4684 0.5854 0.7000 0.8383 0.8015

Toy
❴

Game

Tri-CDR(CL4SRec) 0.3562 0.3915 0.4205 0.4485 0.4712 0.5806 0.6954 0.8357 0.8004

GRU4Rec 0.2381 0.2695 0.2994 0.3421 0.3199 0.4173 0.5362 0.7521 0.7163
SASRec 0.2863 0.3182 0.3475 0.3851 0.3754 0.4742 0.5903 0.7804 0.7453
CL4SRec 0.3013 0.3340 0.3627 0.4001 0.3925 0.4937 0.6078 0.7971 0.7586
EMCDR 0.2771 0.3114 0.3417 0.3801 0.3743 0.4807 0.6008 0.7950 0.7546
CoNet+ 0.3054 0.3381 0.3668 0.4028 0.3987 0.5001 0.6140 0.7959 0.7607

SASRec(S+T) 0.2963 0.3285 0.3576 0.3950 0.3877 0.4874 0.6029 0.7922 0.7549
DTCDR+ 0.3034 0.3353 0.3639 0.4012 0.3963 0.4952 0.6087 0.7968 0.7587
DDTCDR+ 0.3018 0.3339 0.3629 0.3995 0.3939 0.4935 0.6081 0.7937 0.7569
DASL+ 0.3027 0.3346 0.3635 0.4004 0.3946 0.4933 0.6080 0.7948 0.7576

C2DSR+ 0.3038 0.3359 0.3651 0.4015 0.3974 0.4966 0.6126 0.7967 0.7592
Tri-CDR(SASRec) 0.3186 0.3519 0.3811 0.4171 0.4152 0.5182 0.6339 0.8156 0.7752

Movie
❴

Book

Tri-CDR(CL4SRec) 0.3210 0.3533 0.3815 0.4171 0.4140 0.5142 0.6264 0.8063 0.7693

GRU4Rec 0.4123 0.4477 0.4735 0.5002 0.5338 0.6432 0.7448 0.8795 0.8401
SASRec 0.4492 0.4843 0.5096 0.5343 0.5712 0.6795 0.7796 0.9034 0.8629
CL4SRec 0.4578 0.4930 0.5177 0.5417 0.5812 0.6897 0.7872 0.9078 0.8677
EMCDR 0.3608 0.4041 0.4334 0.4612 0.5003 0.6337 0.7496 0.8888 0.8413
CoNet+ 0.4561 0.4911 0.5157 0.5390 0.5844 0.6922 0.7893 0.9064 0.8671

SASRec(S+T) 0.4594 0.4944 0.5191 0.5430 0.5834 0.6913 0.7888 0.9090 0.8687
DTCDR+ 0.4508 0.4864 0.5115 0.5357 0.5779 0.6878 0.7869 0.9082 0.8671
DDTCDR+ 0.4590 0.4938 0.5187 0.5424 0.5827 0.6898 0.7883 0.9070 0.8674
DASL+ 0.4591 0.4939 0.5189 0.5425 0.5827 0.6899 0.7885 0.9072 0.8676

C2DSR+ 0.4587 0.4945 0.5189 0.5424 0.5869 0.6973 0.7936 0.9117 0.8713
Tri-CDR(SASRec) 0.4669 0.5015 0.5258 0.5491 0.5933 0.6999 0.7960 0.9128 0.8729

Book
❴

Movie

Tri-CDR(CL4SRec) 0.4667 0.5005 0.5244 0.5478 0.5923 0.6966 0.7914 0.9089 0.8694

settings. We have observed that optimal hyper-parameters vary across diverse datasets due to their speciic

behavior patterns. Speciically, we select the ���� and ���� in {0.1, 0.5, 1, 4, 10}. For the Amazon dataset, which

exhibits signiicant disparities in sparsity between the two domains, we deine the ratio between �1, �2, and �3
as 1:1:1 for the sparser Amazon Toy and Amazon Book and 100:1:1 and 1000:1:1 for the denser Amazon Movie

and Amazon Game respectively. In contrast, we deine the ratio between �1, �2, and �3 as 1:1:1 for the Douban

dataset with similar sparsity of two domains. The temperature coeicient � is set to be 0.1. According to the

average natural distribution of the behavior data in the Amazon dataset, we set � to 4.0 in the sparser Amazon

Toy and Amazon Book and 0.5 in the denser Amazon Game and Amazon Movie. Regarding the Douban dataset,

we deine the � as 0.5 and 0.05 for Douban Book and Douban Music, respectively. We conduct ive runs with

diferent random seeds and report the average results of all models.
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Table 5. Results on cross-domain recommendation on Douban platform. All improvements are significant (p<0.05 with paired

t-tests).

Datasets Algorithms N@5 N@10 N@20 N@50 HR@5 HR@10 HR@20 HR@50 AUC

Music

❴

Book

GRU4Rec 0.4643 0.4944 0.5175 0.5441 0.5815 0.6746 0.7659 0.8998 0.8583

SASRec 0.5428 0.5714 0.5921 0.6123 0.6591 0.7474 0.8290 0.9304 0.8942

CL4SRec 0.5536 0.5814 0.5999 0.6193 0.6720 0.7578 0.8308 0.9279 0.8950

EMCDR 0.4785 0.5119 0.5343 0.5555 0.6096 0.7123 0.8008 0.9069 0.8704

CoNet+ 0.5487 0.5783 0.5980 0.6161 0.6729 0.7644 0.8421 0.9327 0.8991

DTCDR+ 0.5413 0.5699 0.5898 0.6100 0.6600 0.7482 0.8269 0.9284 0.8927

SASRec(S+T) 0.5518 0.5813 0.6022 0.6206 0.6687 0.7598 0.8424 0.9348 0.8993

DDTCDR+ 0.5374 0.5671 0.5876 0.6074 0.6544 0.7461 0.8270 0.9268 0.8918

DASL+ 0.5501 0.5806 0.6015 0.6199 0.6664 0.7602 0.8427 0.9350 0.8993

C2DSR 0.5523 0.5823 0.6024 0.6205 0.6717 0.7641 0.8436 0.9346 0.8996

Tri-CDR(SASRec) 0.5625 0.5924 0.6118 0.6287 0.6815 0.7737 0.8503 0.9350 0.9028

Tri-CDR(CL4SRec) 0.5571 0.5860 0.6043 0.6232 0.6743 0.7635 0.8358 0.9301 0.8973

Book

❴

Music

GRU4Rec 0.5030 0.5338 0.5547 0.5757 0.6310 0.7258 0.8085 0.9136 0.8774

SASRec 0.5747 0.6035 0.6219 0.6389 0.6956 0.7842 0.8565 0.9414 0.9088

CL4SRec 0.5560 0.5851 0.6032 0.6210 0.6892 0.7787 0.8501 0.9394 0.9048

EMCDR 0.5080 0.5411 0.5616 0.5793 0.6458 0.7478 0.8286 0.9171 0.8842

CoNet+ 0.5752 0.6053 0.6235 0.6388 0.7047 0.7970 0.8688 0.9454 0.9142

DTCDR+ 0.5689 0.5973 0.6163 0.6331 0.6937 0.7813 0.8561 0.9401 0.9082

SASRec(S+T) 0.5771 0.6062 0.6248 0.6409 0.7015 0.7913 0.8646 0.9449 0.9124

DDTCDR+ 0.5720 0.6005 0.6191 0.6360 0.6935 0.7814 0.8548 0.9398 0.9076

DASL+ 0.5788 0.6089 0.6272 0.6430 0.7012 0.7936 0.8658 0.9447 0.9130

C2DSR 0.5806 0.6101 0.6284 0.6440 0.7043 0.7949 0.8670 0.9449 0.9136

Tri-CDR(SASRec) 0.5891 0.6177 0.6354 0.6505 0.7140 0.8019 0.8717 0.9472 0.9165

Tri-CDR(CL4SRec) 0.5826 0.6112 0.6291 0.6447 0.7051 0.7934 0.8640 0.9421 0.9124

4.4 Performance Comparison on Cross-domain Sequential Recommendation (RQ1)

We conduct our experiments on six CDR tasks, adopting three typical evaluation metrics including NDCG@k

(N@k), Hit Rate@k (HR@k), and AUC with diferent � = 5, 10, 20, 50. Following [20], we randomly sample 99

negative items for each positive instance in testing phase. Table 4 and Table 5 shows the results on the Amazon

platform and Douban platform respectively, and we can observe that:

(1) Tri-CDR achieves the best performances on all metrics and datasets compared to all baselines, with the signii-

cance level � < 0.05. The NDCG@10 improvements of Tri-CDR over the best baseline are 4.52%/2.95%/5.18%/1.42%

on Amazon Toy/Game/Book/Movie, and the HR@10 improvements are 3.89%/2.63%/4.25%/0.37% on four Amazon

datasets consistently. Similarly, the NDCG@10 improvements of Tri-CDR over the best baseline are 1.73%/1.25%

on Douban Book/Music, and the HR@10 improvements are 1.26%/0.88%. It indicates that our triple sequence

learning is beneicial in CDR. Moreover, it also demonstrates that Tri-CDR can well model the correlations

among users’ triple behavior sequences, and successfully capture useful information related to the target-domain

prediction from all domains.

(2) Tri-CDR outperforms all CDR baselines that also consider multi-domain behaviors. It conirms the signii-

cance of (a) explicit triple sequence learning with the mixed behavior sequence that contains the user’s global

interests, and (b) our TCL and TCA that could better model triple correlations among three domains and combine

them into user representations. Comparing with SOTA CDSR models we can know that, DDTCDR and DASL

focus on the dual transfer between source and target domains. They perform worse than Tri-CDR due to the lack

of triple sequence learning. C2DSR also conducts contrastive infomax objectives to improve global-local dual

correlations. However, it does not consider the ine-grained distinctions in domain correlation modeling and
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triple cross-domain attention in multi-domain combination. Sometimes the infomax loss is not well functioned,

which may be caused by its unreal negative sequences. Tri-CDR also outperforms diferent ablation versions

besides baselines as shown in Sec. 4.5.

(3) Comparing the improvements among diferent domains, we ind that Tri-CDR is more beneicial on Game→
Toy(sparse) and Movie→Book(sparse) settings. It not only conirms the efectiveness of Tri-CDR on diferent

data distributions, but also relects that Tri-CDR functions well on relatively sparser target domains, where the

positive knowledge transfer from the source domain should bring in more essential information as supplements,

implying the practical usage of Tri-CDR.

(4) To validate the robustness and scalability of Tri-CDR, we construct four million-level cross-domain settings

on the Douban platform. These four settings encompass two instances wherein the source domain boasted a

million-level interaction dataset (Movie → Book and Movie → Music), along with two instances exhibiting

million-level interaction data for the target domains (Book → Movie and Music → Movie). Subsequently, we

conducted comparative experiments between Tri-CDR and the pivotal baselines, thereby illuminating these

models’ adaptive prowess in intricately large-scale settings. Experimental results demonstrate that the NDCG@10

improvements and the HR@10 improvements of Tri-CDR over the best baseline are 1.97%/1.45%/0.87%/1.42% and

1.55%/1.22%/0.97%/0.52% on four million-level cross-domain settings on the Douban platform respectively. The

above performance comparison and the time complexity analysis mentioned in Sec.3.8.4 validate the model’s

potential within real-world large-scale recommendation systems.

(5) To conirm its universality with diferent application platforms, we have also evaluated Tri-CDR on the

Douban dataset (Book & Music) besides Amazon datasets. In combination with the statistics of CDR datasets

in Table 5, we discover that: (a) consistent with the conventional CDSR algorithms, Tri-CDR functions well on

relatively sparser target domains by transferring the positive knowledge from the denser source domain. (b) In

contrast to the cross-domain settings on the Amazon platform, Tri-CDR shows relatively similar improvements

in the two cross-domain settings on Douban. This may be attributed to the fact that users have longer average

interactions on Douban dataset (48.93 and 60.89 for Book and Music respectively). (c) The experimental results

also demonstrate that some dual-modeling CDSR methods can obtain promising performance on the Douban

dataset. However, Tri-CDR outperforms these algorithms on most metrics, which provides further evidence of

Tri-CDR’s signiicant role in alleviating cross-domain negative transfer and accurately modeling the correlations

among the triple domains. We further conduct a universality analysis on Tri-CDR adopted with diferent base

sequence encoders in Sec. 4.6.

4.5 Ablation Study (RQ2)

In this section, we aim to ind whether diferent components are efective in Tri-CDR. Thus we compare Tri-CDR

with Tri-CDR w/o TCA&TCL, Tri-CDR w/o TCA and Tri-CDR w/o FDM to verify the beneits of TCA, TCL and

FDM. In general, most components’ improvements are signiicant (the average error range ≤ 0.003). In Table 6

we have:

(1) Tri-CDR w/o TCA performs signiicantly better than Tri-CDR w/o TCA&TCL, verifying the efectiveness

of TCL. TCL takes full advantage of CL’s alignment and uniformity [47, 60] and extends it to triple domains,

maximizing the multi-domain mutual information while remaining necessary preference diversity in knowledge

transfer.

(2) Tri-CDR further improves the results of Tri-CDR w/o TCA. Our TCA highlights the information related to

the target-domain preference learned from the current target-domain historical behaviors as well as the user’s

global interests learned frommixed behaviors via cross-domain attention, which enables more positive knowledge

transfer and is beneicial for CDR.
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Table 6. Results on ablation study of Tri-CDR(SASRec).

Datasets Models N@5 N@10 N@20 N@50 HR@5 HR@10 HR@20 HR@50 AUC

Game

❴

Toy

Tri-CDR w/o TCA and TCL 0.2005 0.2239 0.2470 0.2778 0.2720 0.3446 0.4364 0.5925 0.5833

Tri-CDR w/o TCA 0.2022 0.2274 0.2502 0.2807 0.2745 0.3522 0.4426 0.5971 0.5925

Tri-CDR w/o FDM 0.2030 0.2280 0.2503 0.2814 0.2757 0.3530 0.4416 0.5991 0.5915

Tri-CDR 0.2069 0.2312 0.2528 0.2832 0.2797 0.3548 0.4405 0.5945 0.5913

Toy

❴

Game

Tri-CDR w/o TCA and TCL 0.3258 0.3636 0.3937 0.4234 0.4408 0.5578 0.6770 0.8262 0.7866

Tri-CDR w/o TCA 0.3509 0.3871 0.4152 0.4430 0.4698 0.5816 0.6928 0.8322 0.7949

Tri-CDR w/o FDM 0.3485 0.3861 0.4153 0.4429 0.4673 0.5837 0.6990 0.8376 0.8017

Tri-CDR 0.3514 0.3892 0.4182 0.4458 0.4684 0.5854 0.7000 0.8383 0.8015

Movie

❴

Book

Tri-CDR w/o TCA and TCL 0.2959 0.3279 0.3577 0.3952 0.3874 0.4866 0.6047 0.7945 0.7554

Tri-CDR w/o TCA 0.3085 0.3399 0.3679 0.4048 0.3995 0.4967 0.6076 0.7941 0.7589

Tri-CDR w/o FDM 0.3088 0.3415 0.3706 0.4071 0.4044 0.5057 0.6211 0.8055 0.7667

Tri-CDR 0.3186 0.3519 0.3811 0.4171 0.4152 0.5182 0.6339 0.8156 0.7752

Book

❴

Movie

Tri-CDR w/o TCA and TCL 0.4379 0.4754 0.5008 0.5250 0.5706 0.6860 0.7865 0.9077 0.8658

Tri-CDR w/o TCA 0.4611 0.4953 0.5196 0.5433 0.5849 0.6902 0.7864 0.9054 0.8661

Tri-CDR w/o FDM 0.4505 0.4858 0.5106 0.5344 0.5830 0.6916 0.7895 0.9088 0.8683

Tri-CDR 0.4669 0.5015 0.5258 0.5491 0.5933 0.6999 0.7960 0.9128 0.8729

Book

❴

Music

Tri-CDR w/o TCA and TCL 0.5798 0.6092 0.6269 0.6427 0.7067 0.7970 0.8670 0.9461 0.9139

Tri-CDR w/o TCA 0.5868 0.6160 0.6339 0.6491 0.7099 0.7997 0.8703 0.9465 0.9152

Tri-CDR w/o FDM 0.5836 0.6138 0.6313 0.6468 0.7084 0.8014 0.8704 0.9480 0.9155

Tri-CDR 0.5891 0.6177 0.6354 0.6505 0.7140 0.8019 0.8717 0.9472 0.9165

Music

❴

Book

Tri-CDR w/o TCA and TCL 0.5532 0.5833 0.6031 0.6209 0.6721 0.7649 0.8433 0.9324 0.8991

Tri-CDR w/o TCA 0.5576 0.5881 0.6073 0.6254 0.6754 0.7693 0.8452 0.9361 0.901

Tri-CDR w/o FDM 0.5595 0.5902 0.6100 0.6271 0.6777 0.7728 0.8509 0.9368 0.9028

Tri-CDR 0.5625 0.5924 0.6118 0.6287 0.6815 0.7737 0.8503 0.9350 0.9028

(3) Comparing Tri-CDR with and without FDM, we further demonstrate that the ine-grained distinction mod-

eling in TCL is indispensable. FDM keeps the domain diversity and signiicantly brings in additional 1.60%/0.78%

average NDCG@10/HR@10 improvements on six datasets. Besides, it not only helps Tri-CDR to learn better

multi-domain sequence representations, but also makes the model training more stable with diferent parameters.

(4) We also conduct additional experiments to verify the efectiveness of the supervised loss of the source

domain signals on the Toy → Game and Game → Toy setting. The experimental performance demonstrates

that the improvements arising from the supervised source domain loss exhibit a positive correlation with the

sparsity relationship between the source and target domains. Speciically, the source domain loss fails to yield any

signiicant performance improvement on the Toy (Sparse)→ Game (Dense) setting, whereas the improvement

becomes appreciable in the Game (Dense)→ Toy (Sparse) setting. This observation aligns with the underlying

mechanism of cross-domain recommendation and the intuitive understanding of the supervised source domain

loss. It is beneicial in cross-domain settings where the source domain is denser, leading to more informative user

preference modeling. On the other hand, the sparser source domain may introduce bias in model optimization.

The integration of TCA and TCL highlights the informative knowledge while ignoring the noisy information

from the source domain, thereby validating the practical application of the proposed components of Tri-CDR to

some extent.

4.6 Universality of Tri-CDR (RQ3)

Tri-CDR is a model-agnostic framework. We further evaluate its universality on Amazon datasets based on

GRU4Rec and CL4SRec. Fig. 3 illustrates Tri-CDR models on GRU4Rec and CL4SRec, and we can ind that:
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Fig. 3. Universality analysis on Tri-CDR. We show the results of diferent versions of Tri-CDR on GRU4Rec and CL4SRec.

(1) In general, Tri-CDR still achieves consistent and signiicant improvements over diferent ablation versions

and the on all datasets with both GRU4Rec and CL4SRec, which conirms its universality when adopted with

diferent sequential models and even other CL tasks. The improvements are consistent with other metrics.

(2) Comparing with diferent Tri-CDR’s ablation versions, we reconirm that (a) the mixed behavior sequence

is informative, while directly combining source, target, and mixed sequences may also bring in noises, and (b) the

proposed TCA and TCL with FDM are efective to make full use of information of three domains in CDR.

(3) In comparison to DTCDR, Tri-CDR accomplishes signiicant performance improvement on diverse sequence

encoders, which highlights the practical application and the universal efectiveness of Tri-CDR. It is noteworthy

that even the representative sequence encoders on the mixed domain consistently outperform DTCDR on most

cross-domain settings. This reunderscores the critical importance of jonitly modeling users’ mixed domain

behaviors in cross-domain recommendation.

(4) We should highlight that CL4SRec also conducts intra-domain CL tasks based on some sequence augmen-

tations. The improvement brought by Tri-CDR implies that our inter-domain CL could cooperate well with

various intra-domain CL. We notice that CL4SRec(M) has comparable or even better results over Tri-CDR on the

Book domain after careful parameter selections. It is because that the intra-domain CL of CL4SRec on the mixed

sequence (containing multi-domain behaviors) works as certain inter-domain CL tasks. Nevertheless, Tri-CDR

still achieves the best results in general.
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Table 7. Results on diferent domain utilization of Tri-CDR (SASRec).

Datasets Models N@5 N@10 N@20 N@50 HR@5 HR@10 HR@20 HR@50 AUC

Game

❴

Toy

SASRec (T) 0.1853 0.2097 0.2321 0.2633 0.2505 0.3260 0.4149 0.5734 0.5821

SASRec (M) 0.1953 0.2200 0.2417 0.2744 0.2654 0.3420 0.4280 0.5941 0.6017

SASRec (S+T) 0.1948 0.2189 0.2397 0.2715 0.2610 0.3355 0.4184 0.5793 0.5815

SASRec (M+T) 0.1965 0.2210 0.2439 0.2745 0.2675 0.3434 0.4347 0.5893 0.5908

SASRec (S+T+M) 0.2005 0.2239 0.2470 0.2778 0.2720 0.3446 0.4364 0.5925 0.5833

Tri-CDR 0.2069 0.2312 0.2528 0.2832 0.2797 0.3548 0.4405 0.5945 0.5913

Toy

❴

Game

SASRec (T) 0.3304 0.3673 0.3962 0.4262 0.4405 0.5546 0.6691 0.8196 0.7841

SASRec (M) 0.3408 0.3780 0.4064 0.4359 0.4553 0.5706 0.6826 0.8310 0.7966

SASRec (S+T) 0.3436 0.3803 0.4088 0.4380 0.4566 0.5702 0.6828 0.8295 0.7931

SASRec (M+T) 0.3191 0.3576 0.3880 0.4180 0.4359 0.5549 0.6752 0.8256 0.7878

SASRec (S+T+M) 0.3305 0.3687 0.3988 0.4281 0.4463 0.5648 0.6836 0.8310 0.7904

Tri-CDR 0.3514 0.3892 0.4182 0.4458 0.4684 0.5854 0.7000 0.8383 0.8015

Movie

❴

Book

SASRec (T) 0.2842 0.3160 0.3451 0.3839 0.3745 0.4728 0.5883 0.7844 0.7473

SASRec (M) 0.2852 0.3183 0.3479 0.3868 0.3757 0.4783 0.5958 0.7925 0.7533

SASRec (S+T) 0.2963 0.3285 0.3576 0.3950 0.3877 0.4874 0.6029 0.7922 0.7549

SASRec (M+T) 0.3000 0.3326 0.3617 0.3985 0.3922 0.4930 0.6083 0.7948 0.7573

SASRec (S+T+M) 0.2959 0.3279 0.3577 0.3952 0.3874 0.4866 0.6047 0.7945 0.7554

Tri-CDR 0.3186 0.3519 0.3811 0.4171 0.4152 0.5182 0.6339 0.8156 0.7752

Book

❴

Movie

SASRec (T) 0.4492 0.4843 0.5096 0.5343 0.5712 0.6795 0.7796 0.9034 0.8629

SASRec (M) 0.4639 0.4988 0.5234 0.5470 0.5873 0.6949 0.7924 0.9103 0.8704

SASRec (S+T) 0.4594 0.4944 0.5191 0.5430 0.5834 0.6913 0.7888 0.9090 0.8687

SASRec (M+T) 0.4486 0.4849 0.5100 0.5336 0.5809 0.6927 0.7918 0.9105 0.8693

SASRec (S+T+M) 0.4469 0.4814 0.5062 0.5303 0.5749 0.6814 0.7792 0.9002 0.8611

Tri-CDR 0.4669 0.5015 0.5258 0.5491 0.5933 0.6999 0.7960 0.9128 0.8729

4.7 Analyses on the domain utilization of Tri-CDR (RQ4)

To inspect the efectiveness of diferent domains on Tri-CDR, we use S, T, and M to represent using source,

target, and mixed sequences respectively, and compare Tri-CDR with ive combinations. It is worth noting that

SASRec (T) and SASRec (M) denote the single-domain SR models with the user’s target behavior sequence and

mixed behavior sequence. On the other hand, SASRec (S+T), SASRec (M+T), and SASRec (S+M+T) refer to the

cross-domain SR models based on the user’s source and target domain [22, 23, 33, 70], mixed and target domain

[3, 66], and mixed, source and target domain (the proposed CDSR setting), respectively. From Table. 7, we can

observe that:

(a) Comparing the irst two versions, SASRec (M) signiicantly outperforms SASRec (T) on all metrics and

datasets. It is reasonable since the mixed sequence is the complete user chronological behavior sequence from

both the source and target domains. The sequential encoder on the mixed behavior sequence can be viewed as

the cross-domain sequence encoder to some extent, yielding cross-domain information gain.

(b) Dual-modeling CDR methods (SASRec (S+T) and SASRec (M+T)) do not always achieve consistent improve-

ment over the single-domain SR methods, and the simply triple-modeling CDR method (SASRec (S+T+M)) may

even lead to further performance deterioration in some cross-domain settings. It further reinforces that both

source and mixed sequences encompass cross-domain knowledge and noise information simultaneously and that

simple dual- and triple-modeling strategies may be insuicient to accurately distinguish and model the complex

correlations and confounding knowledge in multiple sequences.

(c) Comparing SASRec (S+T+M) and Tri-CDR on four cross-domain settings, we further demonstrate the

efectiveness of the proposed TCA and TCL, which is primarily due to the fact that TCA highlights the users’
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(a) Loss weight �!"# of �!"# (b) Loss weight �$%# of �$%# (c) Margin γ of �$%#

(e) Loss weight �!"# of �!"# (f) Loss weight �$%# of �$%# (g) Margin γ of �$%#

(d) Temperature coefficient τ

(h) Temperature coefficient τ
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Fig. 4. Parameter analyses on loss weight ���� of L��� , ���� of L��� , margin � of L��� and temperature coeficient � .

(a)-(h) shows the results of Game→Toy, and (i)-(p) shows the results of Toy→Game.

target-domain preferences and comprehensive interests from the cross-domain knowledge transfer, and TCL

precisely models the correlation among triple behavior sequences.

4.8 Parameter Sensitivity Analyses (RQ5)

4.8.1 Analyses on CL loss weights ���� , ���� , margin � and temperature coeficient � . In Fig. 4, we conduct

four parameter analyses on the Game→Toy setting (the irst two rows) and the Toy→Game setting (the last

two rows) to investigate the performance trends with diferent loss weight ���� of L��� , loss weights ���� of

L��� , margin � of L��� and temperature coeicient � in Eq. (6) and Eq. (7). We observe that: (1) Tri-CDR’s

performance irst increases and then decreases as ���� and � gets larger. The length of behavioral sequences

within the triple domain difers across diverse cross-domain settings, thereby leading to subtle distinctions in

the interrelationships among triple domains. According to the behavior distribution characteristics, the loss

weight ���� of L��� difers for diferent cross-domain settings. ���� = 0.1/4.0 achieves the best performance

on Game→Toy and Toy→Game settings, respectively. In contrast, Tri-CDR is insensitive to the temperature

coeicient � , so we set it as 0.1 for all CDSR settings with the purpose of simplifying the hyper-parameter tuning

and obtaining the promising performance. (2) Too smaller ���� may weaken the power of FDM in TCL, while too
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Table 8. Parameter analyses on the ratio among loss weights �1, �2 and �3

Datasets Models
Ratio among

�1, �2 and �3
N@5 N@10 N@20 N@50 HR@5 HR@10 HR@20 HR@50 AUC

Game

❴

Toy

Tri-CDR

w/o FDM

1:1:0.1 0.2036 0.2272 0.2496 0.2807 0.2770 0.3501 0.4387 0.5954 0.5867

1:1:1 0.2030 0.2280 0.2503 0.2814 0.2757 0.3530 0.4416 0.5991 0.5915

10:1:1 0.2016 0.2258 0.2481 0.2791 0.2730 0.3479 0.4362 0.5934 0.5861

100:1:1 0.1992 0.2232 0.2453 0.2763 0.2682 0.3428 0.4307 0.5877 0.5835

1000:1:1 0.1978 0.2223 0.2444 0.2754 0.2666 0.3425 0.4304 0.5873 0.5833

Tri-CDR

1:1:0.1 0.2072 0.2320 0.2538 0.2840 0.2803 0.3568 0.4433 0.5961 0.5916

1:1:1 0.2069 0.2312 0.2528 0.2832 0.2797 0.3548 0.4405 0.5945 0.5913

10:1:1 0.2033 0.2275 0.2490 0.2793 0.2731 0.3479 0.4336 0.5868 0.5867

100:1:1 0.2008 0.2246 0.2457 0.2769 0.2689 0.3429 0.4266 0.5844 0.5831

1000:1:1 0.2003 0.2244 0.2461 0.2768 0.2676 0.3421 0.4282 0.5842 0.5832

Toy

❴

Game

Tri-CDR

w/o FDM

1:1:1 0.3276 0.3664 0.3971 0.4268 0.4449 0.5647 0.6866 0.8354 0.7959

10:1:1 0.3336 0.3722 0.4016 0.4309 0.4498 0.5688 0.6852 0.8324 0.7930

100:1:1 0.3423 0.3801 0.4092 0.4381 0.4566 0.5737 0.6887 0.8337 0.7949

1000:1:1 0.3485 0.3861 0.4153 0.4429 0.4673 0.5837 0.6990 0.8376 0.8017

1000:1:0.1 0.3476 0.3845 0.4143 0.4424 0.4655 0.5795 0.6975 0.8385 0.8010

Tri-CDR

1:1:1 0.3326 0.3708 0.4002 0.4302 0.4490 0.5671 0.6834 0.8339 0.7948

10:1:1 0.3437 0.3809 0.4101 0.4384 0.4602 0.5752 0.6907 0.8328 0.7951

100:1:1 0.3463 0.3842 0.4127 0.4406 0.4631 0.5807 0.6934 0.8330 0.7957

1000:1:1 0.3514 0.3892 0.4182 0.4458 0.4684 0.5854 0.7000 0.8383 0.8015

1000:1:0.1 0.3503 0.3877 0.4170 0.4444 0.4687 0.5843 0.6998 0.8375 0.8013

larger ���� may also disturb the triple correlation learning in CSM. It is also natural that Tri-CDR is less sensitive

to ine-grained ���� compared to coarse-grained ���� . The optimal performance of Tri-CDR is observed when

���� is set to 10.0 and 5.0 on Game→Toy and Toy→Game settings. (3) � = 0 indicates that the model only wants

the source-mixed distance to be smaller than the source-target distance. When � = 100, Eq. (7) is always active to

broaden the ine-grained cross-domain distance gap. Tri-CDR performs relatively poor under the extreme values

of both sides, indicating the importance of an appropriate margin in FDM (4.0 and 1.0 for the Game→Toy and

Toy→Game settings).

4.8.2 Analyses on loss weights �1, �2, and �3 in CSM. We implement a series of experiments to investigate the

efect of diferent ratios among �1, �2, and �3 of L��� in Tri-CDR. Table 8 shows the results of Tri-CDR(SASRec)

with or without FDM on the Game→Toy and Toy→Game settings. We observe that: (1) for Tri-CDR w/o FDM,

larger loss weights of �1 lead to better performance on the Toy→Game setting (the relatively denser target

domains). It is natural since the correlations between the source and mixed behavior sequences should be more

highlighted to ensure learning informative source sequence representations from the sparser source behavior

sequences. For the Game→Toy setting (the sparser target domains), we ind that the loss weight ratio of 1:1:1

already achieves the best performance. (2) For Tri-CDR, we also observe the same trend on the Toy→Game

setting that the performances increase as �1 becomes larger. Moreover, regardless of the ratio among �1, �2, and

�3, Tri-CDR shows consistent improvements compared to Tri-CDR w/o FDM. Enhanced by FDM, the results are

relatively satisfactory even with imperfect loss weights (average signiicant improvements of 1.17% and 0.51% on

NDCG@10 and HR@10 respectively). It demonstrates that the proposed FDM helps to improve the efectiveness

as well as the robustness of triple contrastive learning, making it less sensitive to diferent loss weights in CSM

and more practical in real-world scenarios. (3) In comparing the diferent performances of Tri-CDR with diferent

ratios between �2, and �3 in two cross-domain settings, we notice that Tri-CDR exhibited further improvements

after reducing �3 (loss weight of L��� between source and target domains) on the Game→Toy setting. This

improvement is interpretable as its underlying principle aligns with certain assumptions of FDM. Speciically,
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(a) SASRec (S+T+M) (b) Tri-CDR w/o FDM (c) Tri-CDR

(d) SASRec (S+T+M) (e) Tri-CDR w/o FDM (f) Tri-CDR

Mixed sequence representation Source sequence representation Target sequence representation

Fig. 5. Visualization of diferent Tri-CDR versions among triple domains, where the blue cross, green clubs, and red circle

denote the mixed sequence representation, source sequence representation and target sequence representation respectively.

Tri-CDR precisely controls the similarity between the source and target domains by constraining the hyper-

parameters, thereby modeling the ine-grained distinction among triple sequences. To mitigate the complexity of

model training while preserving its scalability, we maintain the balanced ratio of �2, and �3 as 1:1 when presenting

the performance of Tri-CDR. Experimental results also indicate that Tri-CDR achieves signiicant improvements

over the current state-of-the-art baseline, even without ine-grained tuning of the ratio between �2, and �3.

4.9 Estimation of User Preference Modeling in Tri-CDR (RQ6)

To intuitively show the impacts of both similarity and distinction modeling in TCL, we show the visualization of

randomly selected multi-domain sequence representations in SASRec (S+T+M), Tri-CDR w/o FDM, and Tri-CDR

via t-Distributed Stochastic Neighbor Embedding (t-SNE) [46]. Fig. 5 and Fig. 6 illustrate the distributions of three

domains and diferent users via diferent colors and shapes, respectively. In each igure, the irst row refers to the

visualization on the Game→Toy setting, while the second row represents the visualization on the Toy→Game

setting.

4.9.1 Visualization of the overall distribution across triple domains. We depict the overall distribution of the

randomly selected 100 users’ sequential representations across diferent domains via t-SNE in two cross-domain

settings, as illustrated in Fig. 5. We observe that: (1) As shown in Fig. 5 (a) and (d), most users’ multi-domain

sequence representations are naturally clustered via their domains rather than their users in SASRec (S+T+M). (2)

Comparing Fig. 5 (b) and (e) with Fig. 5 (a) and (d), the multi-domain sequence representations are converted

from domain-based clustering to the user-based, which indicates that the coarse-grained similarity modeling

in TCL does make triple sequence representations of a user to be similar. (3) In contrast to Fig. 5 (e), the target

domain sequence representations in Fig. 5 (f) do not aggregate in the approximate location but rather distributed

around user-speciic cross-domain information. This indicates that FDM enhances the discriminability of the

target domain sequence representations in coarse-grained comparisons, enabling precise modeling of the users’

target interests.
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(a) SASRec (S+T+M) (b) Tri-CDR w/o FDM (c) Tri-CDR

(d) SASRec (S+T+M) (e) Tri-CDR w/o FDM (f) Tri-CDR

Mixed sequence representation Source sequence representation Target sequence representation

Fig. 6. Visualization of diferent Tri-CDR versions from the perspective of diferent users. We employ color diferentials to

distinguish diferent users while utilizing shapes to diferentiate the same user’s sequential representations across triple

domains.

4.9.2 Visualization of the independent distribution among diferent users. In order to investigate the independent

distribution of diferent domain sequence representations among diferent users, we randomly select 10 users

and visualized the aforementioned representations with t-SNE. The observations are as follows: (1) Similar to

Fig. 5(a) and (d), the distances among the same user’s triple sequence representations are relatively large in 6(a)

and (d). This leads to a failure in building adequate cross-domain correlations, and thus cannot make full use of

additional source/mixed domains’ information. (2) In Fig. 6(b) and (e), irrespective of whether adjust the ratio

hyper-parameters or not, the association among triple sequence representations of the same user is consistently

improved with CSM. This proves the efectiveness of the information gain derived from coarse-grained similarity

modeling. (3) In Fig. 6(b), some users’ multi-domain sequence representations are too close to form small acute

triangles. Too homogeneous multi-domain representations may weaken the additional information gains from

source/mixed sequences, which will harm the positive knowledge transfer. In contrast, armed with FDM, these

users in Fig. 6(c) have more distinguishable sequence representations forming obtuse triangles, and thus Tri-CDR

could achieve better results. (4) Despite the employment of suicient tuning ratios among �1, �2, and �3 in CSM,

Fig. 6(e) still exhibits unexpected deviations in the triple correlation. In contrast, the visualization of triangles in

Fig. 6(f) provides tangible evidence of the practical signiicance of FDM.

5 CONCLUSION

In this work, we propose a model-agnostic Triple sequence learning for Cross-Domain Recommendation (Tri-CDR)

framework. Conventional CDR methods mainly focus on modeling the dual-relations between the source and

target domains or the mixed and target domains, failing to explore the triple correlation among the source, mixed,

and target domains. Tri-CDR conducts a triple cross-domain attention method to highlight useful information

and accelerate positive knowledge transfer and enables a more accurate multi-domain sequence representation

learning strategy via both the coarse-grained similarity modeling and ine-grained distinction modeling. The

extensive evaluation and analyses on six benchmark cross-domain settings demonstrate that Tri-CDR is able to
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precisely model the similarity while preserving the information diversity among triple domains, which reveals the

underlying principles of its efectiveness and universality. We believe that the triple sequence learning paradigm

will provide a solid foundation for researchers and practitioners to explore new directions in cross-domain

recommendation.

In the future, we will continue to explore the correlations among the source, target, and natural mixed behavior

sequences, as well as more sophisticated modeling on their representation learning and multi-domain aggregation.

We will also enhance Tri-CDR’s capability by incorporating more modality information of item contents as

semantic bridges in multi-domain recommendation.
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