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A B S T R A C T

Automatic font generation is of great benefit to improving the efficiency of font designers. Few-shot font
generation aims to generate new fonts from a few reference samples, and has recently attracted a lot of
attention from researchers. This is valuable but challenging, especially for ideograms with high diversity and
complex structures. Existing models based on convolutional neural networks (CNNs) struggle to generate glyphs
with accurate font style and stroke details in the few-shot setting. This paper proposes the TransFont, exploiting
the long-range dependency modeling ability of the Vision Transformer (ViT) for few-shot font generation. For
the first time, we empirically show that the ViT is better at glyph image generation than CNNs. Furthermore,
based on the observation of the high redundancy in the glyph feature map, we introduce the glyph self-attention
module for mitigating the quadratic computational and memory complexity of the pixel-level glyph image
generation, along with several new techniques, i.e., multi-head multiple sampling, yz axis convolution, and
approximate relative position bias. Extensive experiments on two Chinese font libraries show the superiority of
our method over existing CNN-based font generation models, the proposed TransFont generates glyph images
with more accurate font style and stroke details.
. Introduction

At present, the creation of font libraries relies heavily on the manual
ork of font designers. The purpose of automatic font generation

s to let the font designer design only part of the glyph, and then
utomatically generate all the remaining glyphs in a font, which can
educe the workload of the designer, improve the efficiency of font
ibrary production. On the other hand, we hope to rely on as few
eference samples as possible, that is, few-shot font generation, so as
o further improve the efficiency of font library creation. Compared
ith the non-few-shot method (Huang et al., 2020; Jiang et al., 2017,
019; Lyu et al., 2017; Wu et al., 2020a,b; Chang et al., 2018; Gao
nd Wu, 2020; Wen et al., 2021; Zeng et al., 2021), few-shot font
eneration (Chen et al., 2021b; Kong et al., 2022; Park et al., 2020,
021; Tang et al., 2022) can be applied in a wider range of scenarios,
.g., historical handwriting repair, handwriting font imitation, etc. Few-
hot font generation has attracted a lot of attention from researchers
ecently.

Few-shot font generation is challenging, especially for ideograms
ith high diversity and complex structure, e.g., there are 70,244 Chi-
ese characters in the official standard GB18030-2005, many of which
ith complex radicals. Existing models based on CNNs struggle to
enerate glyphs with accurate font style and stroke details in the few-
hot setting. We argue that this is due to the limited ability in shape
ecognition (Geirhos et al., 2018). Recent studies have shown that the

∗ Corresponding author.
E-mail address: i_lily@sdu.edu.cn (L. Wu).

ViT (Dosovitskiy et al., 2020) has strong transferability in few-shot
learning (Naseer et al., 2021) and performs better than CNNs on shape
recognition (Naseer et al., 2021; Tuli et al., 2021). Note that the glyph
image naturally expresses shape information. Motivated by this, we
developed a transformer-based font generation model, which shows
promising results in the few-shot setting.

Image generation tasks usually employ pixel-level tokens for higher
generation quality (Zhang et al., 2021; Jiang et al., 2021; Zhao et al.,
2021). In this case, the self-attention module suffers from the quadratic
computational and memory complexity. We observed that the redun-
dancy of glyph feature maps is high. Existing efficient self-attention
methods (Jiang et al., 2021; Xia et al., 2022; Yue et al., 2021; Zhang
et al., 2021; Zhao et al., 2021; Zhu et al., 2020) lack consideration for
the unique sparsity of glyph images and they impair the long-range
dependency modeling ability. We assume that the glyph feature map
can be represented by a small number of critical tokens and propose
the glyph self-attention module, which dynamically attends to a small
number of representative tokens, as shown in Fig. 1(d). Our approach
is more flexible and robust than the local window methods (Jiang
et al., 2021; Liu et al., 2021) (shown in Fig. 1(b)) and the global
fixed anchor method (Zhao et al., 2021) (shown in Fig. 1(c)), which
mitigates the quadratic complexity of the self-attention mechanism
without compromising the long-range dependency modeling ability for
diverse glyphs.
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Fig. 1. Comparison of the schematic of different self-attention methods. A pixel as a
oken in image generation tasks and the solid circle represents a pixel. (a) The standard
elf-attention (Dosovitskiy et al., 2020) suffers from the quadratic computational and
emory complexity. (b) The grid self-attention (Jiang et al., 2021) sacrifice the long-

ange dependency modeling ability. (c) The multi-axis self-attention lack flexibility for
iverse glyphs. (d) Our approach takes into account the long-range dependency and
lexible modeling ability for glyph images.

This paper explores a pure transformer-based model for few-shot
ont generation, the TransFont, consisting of a content encoder, a style
ncoder, and a decoder. We keep the standard global self-attention
Vaswani et al., 2017) in the low-resolution stage and replace the
tandard global self-attention with the glyph self-attention in the high-
esolution stage. Different from existing transformer-based generative
odels (Jiang et al., 2021; Zhang et al., 2021; Zhao et al., 2021), where

hey learn to generate images from random noise, our model learns
mapping from the source font to the target font conditioned on the

eference glyphs.
The proposed glyph self-attention module attends to representative

okens by doing spatial sampling in the glyph feature map, and our
pproach differs from existing methods (Dai et al., 2017; Xia et al.,
022; Yue et al., 2021; Zhu et al., 2020) mainly in three aspects.
irst, we propose multi-head multiple sampling, which enables different
ttention heads to learn different representations explicitly. Second,
e propose to perform convolution along the other two axes (denoted
s 𝑦, 𝑧 axes) of the glyph feature map for predicting sampling coordi-
ates. Since a reasonable assumption is that the conventional 𝑥 axis
onvolution cannot capture glyph information when scanning the non-
lyph area. Last but not least, we introduce the approximate relative
osition bias in the glyph self-attention, which extends the relative
osition bias (Liu et al., 2021) to the high-resolution stage, as we found
hat the relative position bias enables the model to generate sharper
lyph images. The proposed TransFont is evaluated on two Chinese font
ibraries, FounderType and SinoType. Extensive experiments show the
ffectiveness and interpretability of the proposed method. In summary,
his paper makes the following contributions:

• We propose TransFont, a pure transformer-based model for few-
shot font generation, which empirically shows that the ViT is
better at glyph image generation than CNNs, thanks to the ability
in shape recognition.

• We propose the glyph self-attention module for mitigating the
quadratic computational and memory complexity of the self-
attention mechanism on pixel-level glyph image generation, in-
troducing several new techniques, i.e., multi-head multiple sam-
pling, 𝑦𝑧 axis convolution, and approximate relative position
bias.

• We view TransFont as a simple but effective transformer baseline
for future research, demonstrating its superiority over existing
CNN-based font generation models on two challenging Chinese
font libraries, FounderType and SinoType. The proposed Trans-
Font generates glyph images with more accurate font style and
stroke details.

. Related works

.1. Few-shot font generation

Font generation is an image-to-image translation task (Isola et al.,
017; Zhu et al., 2017) where the model learns a mapping from the
2

source font domain to the target font domain. Non-few-shot methods
can be divided into supervised (Huang et al., 2020; Jiang et al., 2017,
2019; Lyu et al., 2017; Wu et al., 2020a,b) and unsupervised (Chang
et al., 2018; Gao and Wu, 2020; Wen et al., 2021; Zeng et al., 2021),
and their performance drops significantly in the few-shot setting. In
addition, artistic font generation (Azadi et al., 2018; Gao et al., 2019)
is related to font generation, but their models cannot generalize to font
generation.

The few-shot methods differ from the non-few-shot methods in two
aspects. First, the separation of content and style representations (Sun
et al., 2017; Zhang et al., 2018). Second, they rely on a large number
of existing fonts to learn font generation capabilities (Chen et al.,
2021b; Kong et al., 2022; Park et al., 2020, 2021; Tang et al., 2022).
Recently, some methods propose to learn localized style representations
by utilizing character radical annotations, i.e., DM-Font (Cha et al.,
2020), LF-Font (Park et al., 2020), and MX-Font (Park et al., 2021).
DG-Font (Xie et al., 2021) proposes an unsupervised font generation
model based on deformable CNNs (Dai et al., 2017). XMP-Font (Liu
et al., 2022) proposes a transformer-based cross-modality pre-training
method, but its encoder and decoder are based on CNNs. Both the
encoder and the decoder are developed based on the transformer in
our work.

2.2. Transformer in computer vision

The success of transformers is expanding from natural language
processing (Brown et al., 2020; Devlin et al., 2018; Radford et al., 2018,
2019; Vaswani et al., 2017) to computer vision (Carion et al., 2020;
Dosovitskiy et al., 2020; Liu et al., 2021). For image generation, one
category of methods generates images indirectly in an autoregressive
manner (Chen et al., 2020; Child et al., 2019; Esser et al., 2021;
Ramesh et al., 2021), and the other directly generates images by using
ViT (Jiang et al., 2021; Zhang et al., 2021; Zhao et al., 2021). Our work
falls into the latter but differs in that font generation is an image-to-
image translation task, whereas (Jiang et al., 2021; Zhang et al., 2021;
Zhao et al., 2021) aim to build a transformer-based GANs (Goodfellow
et al., 2014). For image-to-image translation, the multi-task learning
method of IPT (Chen et al., 2021a) is not suitable for font generation.
For style transfer (Gatys et al., 2016), note that the style here refers
to the texture style, while the font style is the shape style. Therefore,
existing transformer-based style transfer models, i.e., Wu et al. (2021)
cannot generalize to font generation.

Recently, some studies (Naseer et al., 2021; Tuli et al., 2021) have
shown that the ViT (Dosovitskiy et al., 2020) has intriguing properties
compared to CNNs, such as strong ability in shape recognition and
strong transferability for few-shot learning. Previously, Geirhos et al.
(2018) shows that the ImageNet-trained CNNs are strongly biased
towards recognizing textures rather than shapes. Glyph images natu-
rally express shape information, suggesting that the ViT is better at
processing glyph images than CNNs. The strong transferability indicates
that the ViT performs better than CNNs in few-shot learning, and our
proposed TransFont shows that this is indeed the case for few-shot font
generation.

2.3. Efficient self-attention modules

Images lead to the quadratic computational and memory complexity
of self-attention, and many efforts have been made to mitigate this
problem (Dong et al., 2021; Liu et al., 2021; Vaswani et al., 2021;
Zhu et al., 2020). Most relevant to our proposed glyph self-attention
is deformable attention (Xia et al., 2022; Zhu et al., 2020) and PS-
ViT (Yue et al., 2021), and they are inspired by the idea of sampling
in deformable convolutional networks (Dai et al., 2017). It is worth
emphasizing that our motivation for using sampling is to make the
self-attention attends to representative glyph tokens dynamically and
sparsely. From another perspective, Xia et al. (2022) and Yue et al.
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Fig. 2. Overview of the proposed TransFont. The content encoder learns the character content representation from the source font. The style encoder learns the font style
representation from target fonts. The content and style tokens are concatenated as glyph tokens, and then the decoder translates the glyph tokens into glyph images.
m
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(2021) are proposed for discriminative tasks, Zhu et al. (2020) is pro-
posed for object detection, but our glyph self-attention is proposed for
glyph image generation. In addition, the proposed glyph self-attention
is also different from Xia et al. (2022), Yue et al. (2021) and Zhu et al.
(2020) in terms of specific technical details, i.e., multi-head multiple
sampling, 𝑦 𝑧 axis convolution, and approximate relative position bias,
which we will introduce in the next section.

3. Approach

3.1. Overview

The proposed TransFont aims at mapping a glyph image of the
source font to a glyph image of the target font conditioned on the
reference glyph image. As shown in Fig. 2, our model consists of a
content encoder, a style encoder, and a decoder. The two encoders have
the same architecture. The encoder and decoder are symmetrical. We
use PixelShuffle (Shi et al., 2016) in the encoder and PixelUnShuffle
in the decoder. The purpose of PixelShuffle is to gradually reduce the
embedding dimension of the token, while increasing the resolution
of the feature map. The PixelUnShuffle is the inverse operation of
PixelShuffle, and its purpose is the opposite of PixelShuffle. As the
basic block, the transformer block consists of 𝑁 transformer encoder
layer (Dosovitskiy et al., 2020). In the low-resolution stage, we keep
standard self-attention (Vaswani et al., 2017). In the high-resolution
stage (resolution higher than 32 × 32), we replace the standard self-
attention with the proposed glyph self-attention, which we introduce
in section 3.2.

There are only a few samples of new fonts for the model to learn
in the few-shot setting, and the style of new fonts is different from the
font in the pre-training set in practical scenarios. To ensure generation
quality, we generate new fonts by fine-tuning. Our model is trained in
supervised fashion, and we adopt L1 loss as the only loss function for
pre-training and fine-tuning. Denote the model as 𝐺, and the formula
s as follows,

(𝐺) = E𝑐,𝑠,𝑦[‖𝐺(𝑐, 𝑠) − 𝑦‖1],

where 𝑐 is the glyph image from the source font, 𝑠 is the style reference
from target fonts, and 𝑦 is the ground truth.

We use RGB images rather than grayscale images in our method,
because the effect is the same whether the number of channels for the
input image is 3 or 1. Taking the encoder in Fig. 2 as an example, if the
input image is changed from an RGB image to a grayscale image, the
change in the model only occurs in the number of input channels in the
first linear layer, and the rest of the model settings do not need to be
changed, so the result will not be affected. Our early experiments also
showed that there was no difference between using RGB images and
grayscale images, thus we follow the existing font generation research
and use RGB images.
3

3.2. Glyph self-attention

Standard Multi-head Self-attention. We first revisit the standard
ulti-head self-attention in transformer (Vaswani et al., 2017). Denote
∈ R𝐻×𝑊 ×𝐶 as the input feature map, where 𝐻×𝑊 is the resolution

and 𝐶 is the channel dimension. Before computing multi-head self-
attention, we first flatten 𝑥 ∈ R𝐻×𝑊 ×𝐶 to 𝑥 ∈ R𝑁×𝐶 , where 𝑁 = 𝐻×𝑊 .
The multi-head self-attention is formulated as

𝑄 = 𝑥𝑊𝑞 , 𝐾 = 𝑥𝑊𝑘, 𝑉 = 𝑥𝑊𝑣, (1)

ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄𝑖𝐾
𝑇
𝑖 ∕

√

𝑑)𝑉𝑖, (2)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂 , (3)

where 𝑊𝑞 ,𝑊𝑘,𝑊𝑣,𝑊 𝑂 ∈ R𝐶×𝐶 are the projection matrices. 𝑄𝑖, 𝐾𝑖, 𝑉𝑖
∈ R𝑁×𝑑 are the query, key and value matrices in the 𝑖-th head, 𝑑 = 𝐶∕ℎ,
and ℎ is the number of heads.

Glyph Multi-head Self-attention. The quadratic computational
and memory complexity caused by self-attention is the primary prob-
lem for the generation of glyph images. We propose the glyph self-
attention module to mitigate this problem, which attends to a small
number of representative tokens by doing spatial sampling in the glyph
feature map. As shown in Fig. 3, before computing multi-head self-
attention, we sample 𝑥 ∈ R𝑁×𝐶 for ℎ times (𝑁 = 𝐻 × 𝑊 ), each time
sampling 𝑛 tokens, where ℎ is the number of heads and 𝑛 ≪ 𝑁 . Denote
𝛷𝑖 as the sampling function (i.e. torch.grid_sample function), it takes
feature map 𝑥 ∈ R𝑁×𝐶 (𝑁 = 𝐻 × 𝑊 ) and a set of sampling coordinates
(x axis, 𝑦 axis) as inputs. 𝑠𝑖 ∈ R𝑛×𝐶 is the result sampled from 𝑥 ∈ R𝑁×𝐶 ,
and 𝑖 indexes the sampling times. The formula is as follows,

𝑠𝑖 = 𝛷𝑖(𝑥, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠), (1 ≤ 𝑖 ≤ ℎ) (4)

For each 𝑠𝑖, we use different projection matrices to obtain the key and
alue matrices of ℎ pair.

𝐾𝑖 = 𝑠𝑖𝑊
𝑖
𝑘 , 𝑉𝑖 = 𝑠𝑖𝑊

𝑖
𝑣 , (5)

where 𝑊 𝑖
𝑘 ,𝑊

𝑖
𝑣 ∈ R𝐶×𝑑 are the projection matrices, 𝐾𝑖 and 𝑉𝑖 is the

key and value matrices in the 𝑖-th head. The 𝐾𝑖 (𝑉𝑖) on different heads
come from different sampling, please refer to Fig. 3(b) for details. The
operation for query matrix is the same as the standard multi-head
self-attention mentioned earlier.

𝑄 = 𝑥𝑊𝑞 , 𝐾 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐾1,… , 𝐾𝑖), 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑉1,… , 𝑉𝑖), (6)

Finally, the formula for the glyph multi-head self-attention is as follows,

ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄𝑖𝐾
𝑇
𝑖 ∕

√

𝑑 + 𝐵)𝑉𝑖, (7)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂 , (8)

where 𝐵 is the approximate relative position bias, which we describe
in section 3.3. 𝑊 𝑂 ∈ R𝐶×𝐶 is the projection matrices. Note that the
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Fig. 3. (a) The process of sampling by coordinates. The schematic diagram of the 𝑦, 𝑧 axis convolution is shown in the upper left corner. It has a larger receptive field for sparse
lyph feature maps but requires no extra parameters. (b) The illustration of the glyph self-attention with three attention heads, taking the update of a token in the input feature
∈ R𝐻×𝑊 ×𝐶 as an example. Multi-head multiple sampling enables different attention heads to attend to different locations explicitly.
ymbols are the same as those in the standard multi-head self-attention
ormula mentioned earlier, unless otherwise noted.
Sampling by Coordinates. To make the model focus on the glyph

rea, it is critical to obtain the coordinates in the glyph areas. A
aive approach is to use a lightweight convolutional network to predict
oordinates directly, and we found that which is difficult to train in ex-
eriments. Inspired by anchor-based object detection methods (Redmon
nd Farhadi, 2017; Ren et al., 2015) and existing sampling meth-
ds (Xia et al., 2022; Yue et al., 2021; Zhu et al., 2020), we obtain
he sampling coordinates by predicting the offset. Fig. 3(a) shows the
rocess of sampling by coordinates, we first initialize 𝑛 coordinates and

then predict the corresponding offsets through a lightweight convo-
lutional network, and the offset is added to the initial coordinates to
obtain the sampling coordinates. The formula is as follows,

𝛥𝑝 = 𝜃𝑜𝑓𝑓𝑠𝑒𝑡(𝑥) (9)

𝑠𝑖 = 𝛷𝑖(𝑥, 𝑝 + 𝛥𝑝), (1 ≤ 𝑖 ≤ ℎ) (10)

Eq. (11) is equal to Eq. (5), where 𝑥 ∈ R𝐻×𝑊 ×𝐶 is the input feature
ap, 𝜃𝑜𝑓𝑓𝑠𝑒𝑡 is the lightweight convolutional network, 𝛥𝑝 ∈ Rℎ×𝑤×2 is

he offset, and 𝑝 ∈ Rℎ×𝑤×2 is initial coordinates. 𝑝 is evenly initialized as
rectangular grid with 𝑛 coordinates (𝑛 = ℎ × 𝑤). The third dimension
f 𝑝 is 2, representing the 𝑥 axis and 𝑦 axis coordinates, respectively.
chematic diagram as shown in Fig. 3(a).
Convolution along the 𝑦, 𝑧 Axis. There is another problem here.

s shown in Fig. 3(a), the white area accounts for most of the glyph
eature map. A reasonable assumption is that the accurate offset can
nly be output when the convolution kernel scans the glyph area,
ince conventional convolution struggles to capture glyph information
hen scanning non-glyph areas. Refer to the blue convolution kernel

n Fig. 3(a) for intuitive understanding. Note that the offset network
s a lightweight network. We want to minimize the number of its
arameters. Therefore the receptive field cannot be increased by the
umber of layers. To address the above problem, we propose to perform
onvolution along the other two axes of the feature map, refer to
he upper left of Fig. 3(a). The 𝑦, 𝑧 axis convolution has a larger
eceptive field for sparse glyph feature maps but requires no extra
arameters. For simplicity, we denote the conventional convolution as
axis convolution, and the convolution along the other two axes as 𝑦, 𝑧

xis convolutions. The formula is as follows,

𝑥 = 𝐶𝑜𝑛𝑣_𝑥(𝑥), 𝛥𝑦 = 𝐶𝑜𝑛𝑣_𝑦(𝑦), 𝛥𝑧 = 𝐶𝑜𝑛𝑣_𝑧(𝑧), (11)

𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ R𝐻×𝑊 ×𝐶 = 𝑦 ∈ R𝐻×𝐶×𝑊 = 𝑧 ∈ R𝐶×𝑊 ×𝐻 (12)

𝛥𝑝 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝛥𝑦, 𝛥𝑧), (13)

where 𝛥𝑥 ∈ Rℎ×𝑤×2, 𝛥𝑦 ∈ Rℎ×𝑤×1, 𝛥𝑧 ∈ Rℎ×𝑤×1. In practice, 𝐶𝑜𝑛𝑣_𝑦

and 𝐶𝑜𝑛𝑣_𝑧 is a 3 × 3 convolution followed by a 1 × 1 convolution,

4

Fig. 4. Illustration of using the relative position bias of 𝑎 to approximate the relative
position bias of 𝑏, where 𝑎 is the 2 × 2 feature map containing 4 tokens, and 𝑏 is the
4 × 4 feature map containing 16 tokens. Assume that the sampled token is 7-th and
13-th in 𝑏, and the approximate relative position bias is using 2-th and 3-th in 𝑎 to
approximate 7-th and 13-th in 𝑏. Please compare the relative position index (Liu et al.,
2021) of 𝑏 shown on the right for a more intuitive understanding.

and their output channel is 1. To make full use of the information in
the two axes, the outputs of 𝐶𝑜𝑛𝑣_𝑦 and 𝐶𝑜𝑛𝑣_𝑧 are concatenated as the
offset.

3.3. Approximate relative position bias

Our experiments show that the relative position bias (Liu et al.,
2021) makes the model generate sharper glyph images. Since the
relative position along each axis lies in the range [−H+1, W−1], a
smaller-sized bias matrix 𝐵̂ ∈ R(2𝐻−1)×(2𝑊 −1) is first parameterized, and
then values in relative position bias 𝐵 are taken from 𝐵̂. However,
the construction of the relative position index matrix suffers from the
quadratic computational and memory complexity in the high-resolution
stage. For a feature map of resolution 𝑟 × 𝑟, its relative position index
matrix is [𝑟2, 𝑟2]. On the other hand, unlike standard self-attention,
which statically attends to all tokens, the glyph self-attention dynami-
cally attends to the token at different locations. To address the above
problem, we propose to approximate the high-resolution index matrix
with the low-resolution index matrix. In practice, we use the relative
position index matrix of 32 × 32 resolution to approximate the index
matrix of 64 × 64 and 128 × 128 resolution.

For intuitive understanding, an example of using the index matrix
of 𝑎:[2 × 2] to approximate the index matrix of 𝑏:[4 × 4] is shown
in Fig. 4. Assuming that the target feature map is 𝑏, the 7-th and 13-
th tokens are selected by the sampling function 𝛷 to calculate the
glyph self-attention. We perform the same sampling function 𝛷 on 𝑎 to
obtain the 2-th and 3-th tokens in 𝑎, then initialize the relative position
index matrix of 𝑎, and slice out the index matrix corresponding to the

attention map of glyph self-attention. Finally, we expand the slice index
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Fig. 5. Comparison of glyphs in five fonts generated by our method and the other four methods using eight reference samples on FZ-470.
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atrix from 𝑎 to obtain the approximate index matrix for 𝑏. Then we
can use the approximate index to get the bias 𝐵 from the bias matrix 𝐵̂

R(2𝐻−1)×(2𝑊 −1) (Liu et al., 2021) and add it to the calculation of the
lyph self-attention, refer to Eq. (8).

. Experiments

.1. Experiment setup

Datasets. Since there are no publicly available datasets, we col-
ected a font dataset (FZ-470) with three categories of fonts (printed
onts, handwritten fonts, and calligraphy), a total of 470 fonts from
ounderType,1 each with 6,763 Chinese characters (Unicode
E00∼9FA5). All images are 256 × 256 in size. The Song San (a kind of
ont) is used as the source font, and other fonts are also available. We
andomly select 400 fonts for pre-training and the remaining 69 fonts
s new fonts for testing.

We further evaluate our model with another Chinese font library,
inoType.2 An additional font dataset (HW-18) is collected for testing
nly, a total of 18 fonts, each with 6763 Chinese characters (Unicode
E00∼9FA5). All images are 256 × 256 in size.
Few-shot Setting. Take 8-shot as an example, we randomly select

ight character images as the reference sample of each new font, and
he test set of each new font consists of the remaining 6,755 characters.
ll subsequent experiments are conducted under the setting of 8-shot
y default.
Evaluation Metrics. Pixel-level evaluation metrics are different

from human perception and do not evaluate the generated glyph im-
ages well. In addition to RMSE, SSIM, and L1loss, we also employ
perceptual-level metrics to evaluate the generated results. We train two
ResNet-50 (He et al., 2016) classifiers on the test set of FZ-470 and
HW-18 to recognize content and style, respectively. As the perceptual-
level evaluation metrics, Err(C) and Err(S) represent content error and
style error, respectively. The error is computed by the L2 distance
of the feature vector between the generated glyph and ground truth.
In addition, the perceptual-level metrics also include commonly used
Frechet Inception Distance (FID) (Heusel et al., 2017). The prefix 𝑚 of
valuation metrics represents the mean of the fonts in the test set.
Implementation Details. The number of transformer encoder lay-

rs is set to 𝑁 = 3 in each transformer block, and each transformer
ncoder layer with four attention heads. All patch_size is set to 1. We
se the nearest sampling for sampling function 𝛷 in Eq. (5). We use the
icubic interpolation for the downsampling and upsampling layers. We
se the Adam optimizer (Kingma and Ba, 2014) with 𝛽1 = 0.9 and 𝛽2
0.95 for pre-training and fine-tuning, and all learning rates are set to

1 http://www.foundertype.com/index.php/FindFont/index
2 https://sinotype.vcg.com/
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0.0002. We use four NVIDIA Tesla V100 GPUs to pre-train our model.
The pre-training takes about seven days, and fine-tuning takes only a
few minutes.

4.2. Comparison with existing few-shot methods

Comparison Methods. We compare our method with the follow-
ing state-of-the-art CNN-based methods for few-shot font generation,
EMD (Zhang et al., 2018), LF-Font (Park et al., 2020), MX-Font (Park
et al., 2021), and DG-Font (Xie et al., 2021). Note that LF-Font and MX-
Font learn the glyph representation with the supervision of character
radical annotations, while EMD, DG-Font, and our method do not
require additional annotations. Except DG-Font can only generate glyph
images with 80 × 80 resolution, other methods generate glyph images
with 128 × 128 resolution.

Fairness. Although EMD, LF-Font, MX-Font, and DG-Font all claim
o generalize to new fonts without fine-tuning, we fine-tune EMD and
G-Font to generate new fonts for fairness. Since our dataset does not

upport radical annotation, it is impossible to train LF-Font and MX-
ont with FZ-470. We directly use their pre-trained models to generate
ew fonts. Their models are pre-trained with 467 fonts covering 19,234
hinese characters, which is larger than the pre-training set of FZ-470
sed in our method. We note here that LF-Font and MX-Font are not
rained using our training set, which may have contributed to their
eak performance. EMD and DG-Font are pre-trained with FZ-470, and

he fine-tuned results are denoted as EMD∗ and DG-Font∗.
Qualitative and Quantitative Evaluation. The visual comparisons

n the two datasets are shown in Fig. 5 and Fig. 6. The results of
MD∗ are blurry. MX-Font and LF-Font used the same pre-training set,
nd while both are unsatisfactory, the former significantly outperforms
he latter. The structure and style of the glyphs generated by DG-
ont are inaccurate. After fine-tuning, DG-Font∗ is improved but still
nsatisfactory. In contrast, the glyphs generated by our method have
ore accurate font style and stroke details, some glyphs and stroke
etails are marked by blue boxes and circles. The quantitative results
re shown in Table 1. Both qualitative and quantitative comparisons
how that our proposed TransFont significantly outperforms existing
NN-based models. Our method generate glyph images with more
ccurate font style and stroke details.

.3. Ablation study

As mentioned in section 3.2 and 3.3, the proposed glyph self-
ttention differs from existing methods (Dai et al., 2017; Xia et al.,
022; Yue et al., 2021; Zhu et al., 2020) in three points, i.e., multi-
ead multiple sampling, 𝑦𝑧 axis convolution, and approximate relative
osition bias. To further evaluate the effectiveness of these techniques,

http://www.foundertype.com/index.php/FindFont/index
https://sinotype.vcg.com/
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Fig. 6. Comparison of glyphs in five fonts generated by our method and the other four methods using eight reference samples on HW-18.
Table 1
Quantitative comparison of 8-shot font generation on FZ-470 and HW-18.
Dataset Method 𝑚Err(C)↓ 𝑚Err(S)↓ 𝑚FID↓ 𝑚RMSE↓ 𝑚SSIM↑ 𝑚L1loss↓

FZ-470

EMD∗ 0.3666 1.0299 177.14 0.6559 0.6127 0.2797
LF-Font 0.4126 1.4847 198.61 0.8792 0.4962 0.4397
MX-Font 0.2761 0.8264 236.47 0.8185 0.5265 0.3894
DG-Font 0.2417 0.7836 156.23 0.6985 0.5813 0.2903
DG-Font∗ 0.2279 0.7624 153.79 0.6583 0.6061 0.2893
Ours 0.1657 0.6738 142.17 0.6516 0.6146 0.2785

HW-18

EMD∗ 0.1543 0.5446 174.05 0.4879 0.7345 0.1673
LF-Font 0.2896 0.8431 180.14 0.7664 0.5748 0.3415
MX-Font 0.1898 0.4609 199.38 0.6612 0.6319 0.2673
DG-Font 0.2327 0.3997 126.51 0.4898 0.7053 0.1682
DG-Font∗ 0.3651 0.3724 124.89 0.4791 0.7304 0.1688
Ours 0.0729 0.3404 115.53 0.4647 0.7441 0.1551
Table 2
Quantitative comparison of the ablation study on FZ-470 and HW-18. 𝑚.𝑠. represents the multi-head multiple sampling, 𝑦.𝑧.
represents the 𝑦, 𝑧 axis convolution, and 𝑎.𝑟𝑝𝑏. represents the approximate relative position bias.
Dataset Setting 𝑚Err(C)↓ 𝑚Err(S)↓ 𝑚FID↓ 𝑚RMSE↓ 𝑚SSIM↑ 𝑚L1loss↓

FZ-470

w/o 𝑚.𝑠. 0.1786 0.9873 152.13 0.6607 0.6089 0.2833
w/o 𝑦.𝑧. 0.1871 0.9987 155.28 0.6613 0.6073 0.2846
w/o 𝑎.𝑟𝑝𝑏. 0.1818 0.9551 153.73 0.6595 0.6095 0.2803
full model 0.1657 0.6738 142.17 0.6516 0.6146 0.2785

HW-18

w/o 𝑚.𝑠. 0.0802 0.3994 123.89 0.4751 0.7368 0.1651
w/o 𝑦.𝑧. 0.0821 0.4056 125.37 0.4784 0.7359 0.1628
w/o 𝑎.𝑟𝑝𝑏. 0.0912 0.4524 126.82 0.4724 0.7383 0.1699
full model 0.0729 0.3404 115.53 0.4647 0.7441 0.1551
we conduct the ablation study by separately removing these tech-
niques from the glyph self-attention. The quantitative results of ablation
experiments on FZ-470 and HW-18 are shown in Table 2.

For the multi-head multiple sampling, we replace multiple sam-
pling with single sampling and control other settings unchanged. The
quantitative results have dropped on FZ-470 and HW-18. In addition
to more sampling times, multiple sampling enables different attention
heads to learn different representations explicitly, which is missing
from multi-head attention with single sampling.

For the 𝑦, 𝑧 axis convolution, we replace the 𝑦, 𝑧 axis convolution
with 𝑥 axis convolution and control other settings unchanged. It can
be seen that the quantitative results drop significantly on FZ-470 and
HW-18. The unique sparsity of glyph images makes it difficult for 𝑥 axis
convolution to capture glyph information. This experiment shows that
the 𝑦, 𝑧 axis convolution mitigates this problem.

For the approximate relative position bias, we remove the relative
position bias and control other settings unchanged. The quantitative
results drop significantly on FZ-470 and HW-18. A more intuitive com-
parison is shown in Fig. 7(a), and the strokes generated by the model
6

with 𝑎.𝑟𝑝𝑏. are smoother, while the strokes generated by the model
without 𝑎.𝑟𝑝𝑏. are rough. This experiment shows the effectiveness of
the proposed approximate relative position bias.

4.4. Interpretability of the glyph self-attention

The visualization of sampling locations is shown in Fig. 7(b). An
obvious example on Head_2 in the source column is framed by a
dashed red line, with the sample points concentrated in the glyph area.
Here we draw three main conclusions. First, the glyph self-attention
dynamically adjusts the sampling locations for different glyphs. Second,
the sampling locations of different attention heads are different, which
shows the effectiveness of the multi-head multiple sampling. Third,
although white areas do not convey glyph information, the model still
pays attention, indicating the importance of sparse representation of
glyph images. The visualization results show that the interpretability
of the proposed glyph self-attention. It is important to point out that
the sampling location predicted by the offset network has a certain gap
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Fig. 7. (a) Comparison of glyphs generated by our model with or without 𝑎.𝑟𝑝𝑏. (approximate relative position bias), the zoomed-in results are shown on the right. (b) Visualization
of sampling locations in the glyph self-attention at the first transformer encoder layer of the content and style encoder, and the last transformer encoder layer of the decoder.
Table 3
Quantitative comparison with existing efficient self-attention modules on FZ-470 and HW-18.
Dataset Attention 𝑚Err(C)↓ 𝑚Err(S)↓ 𝑚FID↓ 𝑚RMSE↓ 𝑚SSIM↑ 𝑚L1loss↓

FZ-470

grid 0.1695 0.6818 145.16 0.6577 0.6131 0.2802
multi-axis 0.1667 0.7811 149.45 0.6524 0.6144 0.2786
deformable1 0.1669 0.8194 155.63 0.6579 0.6112 0.2809
deformable2 0.1834 0.6758 144.57 0.6597 0.6113 0.2833
glyph 0.1657 0.6738 142.17 0.6516 0.6146 0.2785

HW-18

grid 0.0789 0.3539 125.89 0.4721 0.7352 0.1615
multi-axis 0.0788 0.3571 124.35 0.4728 0.7386 0.1621
deformable1 0.0816 0.3555 123.14 0.4722 0.7385 0.1618
deformable2 0.0828 0.3443 121.64 0.4725 0.7388 0.1637
glyph 0.0729 0.3404 115.53 0.4647 0.7441 0.1551
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Table 4
Inference latency (standard self-attention vs. glyph self-attention). Quantitative results
are in milliseconds.

Resolution 64 × 64 128 × 128 256 × 256

Standard self-attention 6.590283121 111.249493315 Out of Memory
Glyph self-attention 6.679248226 9.452779509 22.343475214

from the ideal. Thus, some sampling locations is not concentrated in
the glyph area.

4.5. Comparison with existing self-attention modules

Many methods have been proposed to mitigate the quadratic com-
putational and memory complexity caused by the self-attention mech-
anism. We conducted a set of experiments, comparing the proposed
glyph self-attention with existing four efficient self-attention mod-
ules (Jiang et al., 2021; Xia et al., 2022; Zhao et al., 2021; Zhu
et al., 2020), to further evaluate the effectiveness of our method for
glyph image generation. These self-attention modules include the grid
self-attention proposed by TransGAN (Jiang et al., 2021) for image
generation, the multi-axis self-attention proposed by HiT (Zhao et al.,
2021) for image generation, the deformable attention proposed by
DAT (Xia et al., 2022) for image classification, and the deformable
attention proposed by deformable DETR (Zhu et al., 2020) for ob-
ject detection. To distinguish the deformable attention of DAT and
deformable DETR, we abbreviate them deformable1 (Xia et al., 2022)
and deformable2 (Zhu et al., 2020), as shown in Table 3.

In experiments, we replace the glyph self-attention with the other
four self-attention modules separately and control other settings to
be the same. The quantitative results are shown in Table 3, and we
can see that the glyph self-attention comprehensively outperforms the
other four self-attention modules on FZ-470 and HW-18. Specifically,
we found that the grid self-attention divides glyph images by grids,
resulting in the truncation of generated glyphs. The edge of glyphs
generated by multi-axis and deformable1 are not as sharp as ours,
reflected in the metrics Err(S) and FID results. The character structure
of glyphs generated by deformable2 is not as accurate as ours, reflected
in the metrics Err(C) results. This experiment shows the effectiveness
and robustness of our proposed glyph self-attention on glyph image

generation.
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4.6. Inference latency (standard self-attention vs. glyph self-attention)

Image generation employs pixel-level tokens for higher genera-
tion quality. In the high-resolution stage, the self-attention suffers
from the quadratic computational and memory complexity. The glyph
self-attention is proposed to mitigate this problem. To show the ef-
fectiveness of our method, we report inference latency following the
code.3

The experimental setup is as follows, GPU: Tesla V100, 32G mem-
ory; embedding dim=128; attention_head=4; transformer encoder layer
= 1. Quantitative results are in milliseconds. We take the input tensor at
different resolutions, and test the inference latency of the self-attention
module at different resolutions.

From Table 4, we can see that the inference latency of glyph self-
attention is close to that of standard self-attention at 64 × 64 resolution.
At 128 × 128 resolution, the inference latency of the proposed glyph
self-attention is significantly faster. When the resolution is increased
from 64 × 64 to 128 × 128, the inference latency of standard self-
ttention increased by a factor of 15.8, while our glyph self-attention
nly increased by a factor of 0.41. At 256 × 256 resolution, the infer-
nce latency of our glyph self-attention is acceptable, while standard
elf-attention is out of memory.

.7. Effect of the selection of reference glyphs

The selection of reference samples has an impact on the generated
esults. We conducted a set of experiments on reference sample se-
ection. We hand-picked three sets of reference samples (i.e., simple,
iddle, complex), each with eight characters. The characters in ‘‘sim-
le’’ are extremely simple in structure and contain very few strokes.
he characters in ‘‘middle’’ are moderately structured and contain a
oderate number of strokes, similar to 8 random samples. The charac-

er structure in ‘‘complex’’ is extremely complex and contains a large
umber of strokes.

Table 6 report the number of stroke type and the total number of
trokes in each group. Table 5 shows the quantitative results of the

3 https://deci.ai/blog/measure-inference-time-deep-neural-networks

https://deci.ai/blog/measure-inference-time-deep-neural-networks
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Fig. 8. Comparison of glyphs in nine fonts generated by our method in different few-shot setting.
Table 5
Quantitative comparison of the selection of reference glyphs on FZ-470 and HW-18.
Dataset Patch_size 𝑚Err(C)↓ 𝑚Err(S)↓ 𝑚FID↓ 𝑚RMSE↓ 𝑚SSIM↑ 𝑚L1loss↓

FZ-470

Simple 1.5901 1.1543 169.27 0.7824 0.5384 0.3763
Middle 0.1735 0.6828 143.61 0.6552 0.6148 0.2741
Complex 0.1806 0.6759 144.97 0.6524 0.6137 0.2739
Random 0.1657 0.6738 142.17 0.6516 0.6146 0.2785

HW-18

Simple 0.0869 0.4909 121.72 0.4984 0.7188 0.1772
Middle 0.0739 0.3573 114.76 0.4649 0.7403 0.1568
Complex 0.0714 0.3481 112.39 0.4622 0.7426 0.1544
Random 0.0729 0.3495 115.53 0.4647 0.7441 0.1551
Table 6
Four group of reference glyphs, this table shows the number of stroke type and the
total number of strokes in each group.

Group Number of stroke type Total number of strokes

Simple 12 32
Middle 14 89
Complex 18 160
Random 15 83

selection of reference glyphs on FZ-470 and HW-18. We can draw the
following conclusions,

(1) When the structure of the reference sample is extremely simple,
or the selected sample contains a very small number of strokes, the
generation quality is poor;

(2) The generated results of ‘‘middle’’ and ‘‘complex’’ are close, and
the results of ‘‘complex’’ are relatively better but limited.

(3) It shows that the more strokes the reference sample contains,
the better the result. This gap may be indistinguishable by the human
eye from ‘‘middle’’ to ‘‘complex’’.

(4) The generated results of ‘‘random’’ are acceptable. In other
words, the strategy of random reference samples is a good measure
for model performance. This experiment shows the rationality of our
experiment setup for new fonts.

4.8. Effect of the number of reference samples

The number of new font reference samples also affects the gen-
eration results. We conducted a set of experiments to test the effect
of the number of reference samples on the generation quality. Fig. 9
shows the visual generated results under different few-shot settings.
8

The visual results show that our model can handle various new font
generation in different few-shot settings. As the number of reference
samples increases, some strokes are generated better. Fig. 8 presents
quantitative results on two datasets, FZ-470 and HW-18. The quantita-
tive results change significantly when the number of reference samples
is very small (1, 4, 8). The quantitative results tend to be stable when
the number of samples is relatively large (16, 32, 64, and 128). This
experiment shows that our transformer-based model is good at few-shot
learning. The performance of our method is stable, and it is robust to
various new font generation.

4.9. Failure case

The complexity of the new font is the key to restricting the model
performance, and our model performs poorly on some complicated
fonts. Fig. 10 shows the failure case on both fonts. We think the poor
performance is mainly due to the high irregularity of the font style.
Generating such a kind of cursive calligraphy font may require some
domain knowledge of calligraphy.

5. Conclusion

In this work, based on the sparsity of glyph images, we intro-
duced the glyph self-attention module for efficiently representing glyph
images in the self-attention mechanism, offering insights for future
transformer-based font generation models. On top of this, we presented
the TransFont, a simple but effective transformer baseline for few-shot
font generation, showing its superiority over existing CNN-based font
generation models on two challenging Chinese font libraries, Founder-
Type and SinoType. One limitation of our method is that it relies on
fine-tuning to generate new fonts. In some application scenarios, fine-
tuning is not supported. Generating high-quality new fonts without

fine-tuning will be future work.
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C

Fig. 9. Quantitative results about the effect of the number of reference samples. With the increase of the number of reference samples, the generation quality gradually improves
and then tends to be stable.
Fig. 10. Generated results on two complicated Chinese fonts, the left font is from the ancient Chinese litterateur ‘‘Su Shi’’, and the right is an irregular font.
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