
Computer Vision and Image Understanding 245 (2024) 104042

T
G
P
S

A

C

K
G
M
T
A
D

1

b
i
2
2
b

(
h
e
e
e
g
h
e
E
2
i
d
r

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu

ext to image synthesis with multi-granularity feature aware enhancement
enerative Adversarial Networks

ei Dong, Lei Wu ∗, Ruichen Li, Xiangxu Meng, Lei Meng
chool of Software, Shandong University, 1500 ShunHua Road, High Tech Industrial Development Zone, JiNan 250101, China

R T I C L E I N F O

ommunicated by Lu Jiang

eywords:
enerative adversarial network
ulti-granularity feature aware enhancement
ext-to-image
utoregressive
iffusion

A B S T R A C T

Synthesizing complex images from text presents challenging. Compared to autoregressive and diffusion model-
based methods, Generative Adversarial Network-based methods have significant advantages in terms of
computational cost and generation efficiency yet remain two limitations: first, these methods often refine all
features output from the previous stage indiscriminately, without considering these features are initialized
gradually during the generation process; second, the sparse semantic constraints provided by the text
description are typically ineffective for refining fine-grained features. These issues complicate the balance
between generation quality, computational cost and inference speed. To address these issues, we propose
a Multi-granularity Feature Aware Enhancement GAN (MFAE-GAN), which allows the refinement process
to match the order of different granularity features being initialized. Specifically, MFAE-GAN (1) samples
category-related coarse-grained features and instance-level detail-related fine-grained features at different
generation stages based on different attention mechanisms in Coarse-grained Feature Enhancement (CFE) and
Fine-grained Feature Enhancement (FFE) to guide the generation process spatially, (2) provides denser semantic
constraints than textual semantic information through Multi-granularity Features Adaptive Batch Normalization
(MFA-BN) in the process of refining fine-grained features, and (3) adopts a Global Semantics Preservation (GSP)
to avoid the loss of global semantics when sampling features continuously. Extensive experimental results
demonstrate that our MFAE-GAN is competitive in terms of both image generation quality and efficiency.
. Introduction

Text-to-image synthesis requires generating photo-realistic images
ased on given text guidance. Due to the significant practical value
n various applications, such as computer-aided design (Chen et al.,
018; Liu et al., 2021a) and art generation (Zhi, 2017; Cheng et al.,
021), text-to-image synthesis has become an active research area in
oth natural language processing and computer vision communities.

The remarkable evolution in Generative Adversarial Networks
GANs) (Goodfellow et al., 2020; Mirza and Osindero, 2014) has spear-
eaded promising results in text-to-image synthesis. To express more
xplicit category information and richer instance-level details while
nsuring text–image semantic consistency, multi-stage methods (Zhang
t al., 2017, 2018) stack a series of generator–discriminator pairs to
enerate initial low-resolution images and refine the initial images to
igh-resolution ones. Based on them, additional DAMSM module (Xu
t al., 2018), Cyclic Consistency (Qiao et al., 2019), Disentangled
ncoder (Dong et al., 2022) or Dynamic Memory module (Zhu et al.,
019) is used to ensure the semantic consistency between text and
mages. GAN networks demonstrate efficiency in inferencing image
istributions based on text embeddings, yet the quality of the generated
esults falls short of competitiveness.

∗ Corresponding author.
E-mail address: i_lily@sdu.edu.cn (L. Wu).

Recent autoregressive and diffusion models, such as DALL-E (Ramesh
et al., 2021) and Imagen (Saharia et al., 2022), based on extensive
data collection and pre-training, demonstrate remarkable capabilities
in synthesizing complex scenes. However, these models often comprise
billions of parameters, resulting in substantial computational costs. This
large model size presents significant challenges for academic institu-
tions and individual researchers, limiting the feasibility of conducting
further research. Additionally, the lack of intuitive smoothing latent
space makes the generation process rely on the delicately designed text
prompts. Finally, these models generate images through token-by-token
generation or progressively denoising, a process involving numerous
inference steps, significantly reducing real-time performance.

To enhance the balance between generation quality, the computa-
tional cost during training, and the model’s inference speed, we focus
on further optimizing GAN and have found two challenges. Firstly,
current GAN-based methods typically attempt to refine all granularity
features indiscriminately at each stage. However, the different gran-
ularity features are initialized gradually rather than simultaneously
during generation. This means the network needs to refine poor-quality
features within regions that have yet to generate initial semantics,
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Fig. 1. (a) Existing models typically attempt to refine all feature outputs from the
previous stage. (b) MFAE-GAN samples the features in different granularity respectively,
which are successively fed to the Coarse-grained Feature Enhancement (CFE) or Fine-
grained Feature Enhancement (FFE) modules for refinement. Multi-granularity Features
Adaptive Batch Normalization (MFA-BN) module in FFE enables denser semantic
constraints.

such as the refinement of texture features of bird wings generated in
the early stages of the network. This strategy compromises the overall
refinement quality of the network. Consequently, the final generated
images frequently suffer from deformations and fail to convey explicit
category information due to a lack of instance-level details. Secondly,
current methods refine image features by fusing text embeddings.
However, almost text embeddings can only provide sparse semantics
and lack detailed descriptions of fine-grained features; therefore, the se-
mantic constraints provided by the text descriptions hardly work when
generating fine-grained features. This inadequacy poses a significant
challenge for networks in synthesizing fine-grained details, especially
when sufficient data is lacking to augment the network’s reasoning
capabilities.

To address above issues, we propose a Multi-granularity Feature
Aware Enhancement GAN (MFAE-GAN) to make the refinement process
in each module match the order of different granularity features being
initialized during the generation process. MFAE-GAN contains two core
modules: the Coarse-grained Feature Enhancement (CFE) module and
the Fine-grained Feature Enhancement (FFE) module. The two modules
sample the different granularity features separately at different stages
(as shown in Fig. 1) and constrain the generation process spatially
by explicitly mapping the multi-granularity image sketches. Specifi-
cally, the CFE and the FFE employ word-level channel attention and
additional word-level spatial attention, respectively, to capture coarse-
grained representations (e.g. poses and shapes) and fine-grained details
(e.g. textures and colors). These are then mapped into feature sketches
to enhance category clarity in the initial stages and highlight instance-
level specifics in subsequent stages. Furthermore, to provide denser
semantic constraints than textual semantic information when adding
fine-grained features, we propose a Multi-granularity Features Adaptive
Batch Normalization (MFA-BN) module. MFA-BN adapts modulation
parameters conditioned on the different granularity features sampled
by word-level spatial and channel attention for text–image fusion at
multi-granularity. This encourages the network to focus on refining
fine-grained features while preserving the integrity of coarse-grained
features. Finally, since continuous sampling of specific granularity
features may result in the loss of global semantics, we propose a
Global Semantics Preservation (GSP) module. This module fuses inter-
mediate features and sentence embeddings through a streamlined way
to supplement global semantics and maintain semantic integrity. We
also introduce a pre-trained CLIP model (Radford et al., 2021) as an
evaluation metric in calculating the loss to maximize the text–image
similarity. Extensive experiments on CUB, COCO and CC series datasets
illustrate that the proposed MFAE-GAN model significantly outperforms
the previous methods, quantitatively and qualitatively. Moreover, we
conduct a series of analysis experiments to evaluate the importance of
2

Table 1
Comparative analysis of previous text-to-image model. Considering Multiple Stage, At-
tention Mechanism, Multi-Granularity, Additional Control and Deep Fusion, MFAE-GAN
uses only text as input in training and is performed in an end-to-end process.

Model Multiple Attention Multi Additional Deep
Stage Mechanism Granularity Control Fusion

StackGAN (Zhang et al., 2017) ✓ × × × ×
AttnGAN (Xu et al., 2018) ✓ ✓ × × ×
DM-GAN (Zhu et al., 2019) × ✓ ✓ × ×
MirrorGAN (Qiao et al., 2019) × ✓ × × ×
Obj-GAN (Li et al., 2020) ✓ ✓ × ✓ ×
ControlGAN (Li et al., 2019) ✓ × × ✓ ×
DF-GAN (Tao et al., 2022) × × × × ✓

SSA-GAN (Liao et al., 2022) × × × × ✓

RAT-GAN (Ye et al., 2022) × ✓ × × ✓

GALIP (Tao et al., 2023) × × × × ✓

StyleGAN-T (Sauer et al., 2023) ✓ ✓ × × ✓

GigaGAN (Kang et al., 2023) ✓ ✓ × × ×
MFAE-GAN (ours) × ✓ ✓ × ✓

each component in our approach and further validate the effectiveness
of MFAE-GAN in balancing generation quality, computational cost and
inference speed.

Our main contributions can be summarized as follows:
∙ We propose a novel framework, MFAE-GAN, to sample and re-

fine features of different granularity separately, which can reduce the
mutual interference between different granularity features during the
generation process. It can guarantee the image refinement quality of
the network.

∙ The CFE and FFE modules are designed to enhance category-
elated coarse-grained and instance-level detail-related fine-grained
eatures, respectively, and impose constraints spatially from multi-
ranularity feature sketches.
∙ We propose an MFA-BN module, which provides denser semantic

onstraints than textual semantic information when adding fine-grained
eatures, and a GSP module that preserves semantic integrity while
ontinuously sampling specific granularity features, which allows the
enerated images to contain richer details.

. Related work

Reed et al. (2016a,b) first successfully synthesizes plausible images
sing a conditional generative model (cGANs). Based on cGANs, input
onditions such as mask (Park et al., 2019), sketch (Zhang et al., 2019;
u et al., 2017; Toda et al., 2022; Liu et al., 2021b; Koley et al.,
023), segmentation (Liu et al., 2019) and layout (Zhao et al., 2019; He
t al., 2021; Xue et al., 2023) are tried for controlled image generation.
ompared to the above input conditions, text becomes the main control
eans due to its advantages such as conforming to subjective human

xpressions, high flexibility, easy interaction and collection of training
ata. Most current text-to-image synthesis approaches can be broadly
lassified into GAN-based and Large Pre-training Models based on
utoregressive and diffusion models.

GAN-based Models To synthesize higher-resolution images based
n text descriptions, StackGAN (Zhang et al., 2017) and StackGAN++
Zhang et al., 2018) stack multiple generators and discriminators and
mploy the text information to refine the rough initial image to a
igh-resolution photo-realistic one. AttnGAN (Xu et al., 2018) adds
ttention mechanism components into a multi-stage generator pipeline.
he attention mechanism components can help the network synthesize
ore fine-grained details based on relevant local word embedding.
M-GAN (Zhu et al., 2019) employs a memory writing gate-based
emory Network (Sukhbaatar et al., 2015; Gulcehre et al., 2018) to

elect relevant words according to the initial image dynamically. Mir-
orGAN (Qiao et al., 2019) exploits the idea of learning text-to-image
eneration by redescription to progressively enhance the diversity and
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semantic consistency of the generated images. To compensate for the
lack of semantic information, especially spatial constraints, provided by
a single textual input, Obj-GAN (Li et al., 2020) and ControlGAN (Li
et al., 2019) use additional constraints that supply spatial information,
such as layout or mask, as a supplement to the textual semantics. To
fuse text and image information more effectively, DF-GAN (Tao et al.,
2022) concatenates multiple Deep Fusion Blocks and operates affine
transformations on the image feature maps for text–image fusion. SSA-
GAN (Liao et al., 2022) effectively fuses the text and image features
by predicting semantic masks separately in each affine block to guide
the learned text-adaptive affine transformation. RAT-GAN (Ye et al.,
2022) connects all the conditional affine transformation blocks with
recurrent connections for explicitly fitting the temporal consistency.
LAFITE (Zhou et al., 2022) and GALIP (Tao et al., 2023) introduce CLIP-
based loss, CLIP-based discriminator and CLIP-empowered generator
for text-to-image training and show significant improvements. Some
studies attempt to further improve performance by scaling up the
GAN model. StyleGAN-T (Sauer et al., 2023) successfully scaling to
the large-scale text-to-image task in lower resolutions. GigaGAN (Kang
et al., 2023) efficiently extends the capacity of the generator through
retaining a set of filters and employing sample-specific linear combina-
tions. We consider five aspects: Multiple Stage, Attention Mechanism,
Multi-Granularity, Additional Control, Deep Fusion which are applied
to GAN-based text-to-image generation methods and illustrate differ-
ences in characteristics of above methods in Table 1, where GigaGAN
and StyleGAN-T are used for high-resource environments, the other
methods are used for low-resource environments.

Large Pre-training Models Large pre-training models have shown
powerful ability in text-to-image synthesis tasks. Autoregressive mod-
els, e.g., DALL-E (Ramesh et al., 2021) and CogView (Ding et al., 2021),
achieve text-to-image synthesis based on a pre-trained unidirectional
transformer that autoregressively models the text and image tokens
together as a single stream of data. Cogview2 (Ding et al., 2022)
proposes a solution based on hierarchical transformers and local par-
allel autoregressive generation for faster image generation. Parti-350M
and Parti-20B (Yu et al., 2022) use the powerful image tokenizer to
encode images as sequences of discrete tokens and take advantage of
its ability to reconstruct such image token sequences of visually diverse
images. Diffusion models (Sohl-Dickstein et al., 2015; Dhariwal and
Nichol, 2021; Ho et al., 2020; Nichol and Dhariwal, 2021) also show
impressive performance on text-to-image synthesis. VQ-Diffusion (Gu
et al., 2022) is based on a vector quantized variational autoencoder
(VQ-VAE) (Van Den Oord et al., 2017) whose latent space is modeled
by a conditional variant of the recently developed Denoising Diffusion
Probabilistic Model (DDPM) to eliminate the unidirectional bias and
avoid the accumulation of errors. DALL⋅E 2 (Ramesh et al., 2022)
adopts a CLIP decoder incorporating a diffusion model. Latent Diffusion
Models (LDM) (Rombach et al., 2022a) propose a method for perform-
ing the diffusion process on the latent space, which can greatly reduce
the computational complexity. Inspired by the Classifier-Free Diffusion
Guidance (Ho and Salimans, 2022), GLIDE (Nichol et al., 2021) further
extends the model scale to enable more powerful image generation and
drive image editing. Imagen (Saharia et al., 2022) introduces dynamic
thresholding and Efficient U-Net to generate more photo-realistic and
detailed images.

3. MFAE-GAN

In order to obtain high-quality generation results based on limited
computational cost through MFAE-GAN, we propose (i) CFE and FFE
modules to sample and refine different granularity features with differ-
ent strategies, (ii) an MFA-BN module, which provides denser semantic
constraints than textual semantic information when adding fine-grained
features, (iii) a GSP module to supplement global semantics and to
maintain semantic integrity through fusing sentence embeddings. In
the rest of this section, we will introduce the design of each part of
MFAE-GAN in detail.
 𝛾

3

3.1. Model overview

A schematic diagram of our MFAE-GAN architecture is shown in
Fig. 2. MFAE-GAN has a text encoder that is pre-trained for COCO,
CUB and CC series datasets, respectively, by the same strategy as
AttnGAN (Xu et al., 2018) which minimizes the Deep Attentional
Multimodal Similarity Model (DAMSM) loss to extract text descriptions
into word embeddings and sentence embeddings to ensure better co-
ordination between the training processes of the text encoder and the
generator, a generator consisting of 4 CFE modules, 2 FFE modules and
2 GSP modules, which can sample and refine coarse-grained features
at early stages and fine-grained features at later stages respectively
to avoid refinement quality’s degradation, and a discriminator that is
used to promote the network to synthesize images that are semantically
consistent with the given text and close to an actual image. Our model
takes text embeddings and a noise vector 𝑧 ∈ R100 sampled from
a Gaussian distribution as input and can finally generate 256 × 256
resolution images.

3.2. Coarse-grained feature enhancement

CFE focuses on independently sampling coarse-grained global fea-
tures related to category information (e.g., pose and shape) in the
early generation stages, reducing the interference of fine-grained local
features that have not yet been initialized to coarse-grained global
features, and further optimizing the representations of coarse-grained
features by deep fusion of textual supervision information. The archi-
tecture of the Coarse-grained Feature Enhancement (CFE) module is
shown in Fig. 3. Since the coarse-grained features are often distributed
at global scales, we achieve naturally sampling of the coarse-grained
global features representations through word-level channel attention
that shares weights within each channel. Specifically, the channel
attention module takes word embeddings 𝑠 and hidden image features
𝑣 ∈ R𝐶×(𝐻∗𝑊 ) as input, where 𝐻 and 𝑊 define the height and width of
the feature map at current CFE module. The word embedding 𝑤 is first
converted to an underlying common semantic space of visual features
as 𝑤̃. It expresses the correlation between feature channels and words
by calculating the channel-wise attention matrix 𝑚 = 𝑣𝑤̃. Then, the
channel attention module aggregates weight values in a channel-wise
attention matrix 𝛼 as

𝛼𝑖,𝑗 =
exp

(

𝑚𝑖,𝑗
)

∑𝑙−1
𝑘=0 exp

(

𝑚𝑖,𝑘
)

, (1)

where 𝛼𝑖,𝑗 indicates the weight that the model attends between the 𝑖th
channel in the visual features 𝑣 and the 𝑗th word in the sentence 𝑇 .
Finally, we sample the coarse-grained feature representations across
all spatial locations in each channel as 𝑓 𝛼 = 𝛼 (𝑤̃)𝑇 . Following SSA-

AN (Liao et al., 2022), we utilize two convolutional layers and a
eLU activation layer to map coarse-grained feature representations

o coarse-grained feature sketches 𝑖𝑐 ∈ R(𝐻∗𝑊 ) that provide explicit
patial information supervision. Unlike previous work which uses pre-
abeled sketch data to pre-train the network to process or predict
ketches (Zhang et al., 2019; Lu et al., 2017; Toda et al., 2022; Liu et al.,
021b; Koley et al., 2023), our strategy of multi-granularity feature
apping module is trained under the weakly supervised setting jointly
ith the whole network without specific loss function to guide its

earning process nor additional mask annotation. This strategy reduces
he requirement for computational resources while obtaining available
patial constraints.

In the early stage, the sparse semantics provided by the text descrip-
ion can help the network to generate category-related coarse-grained
isual semantics. Therefore, we adopt two Multi-Layer Perceptrons
MLPs) conditioned on given sentence embedding to learn modulation
arameters 𝛾𝑐𝑓𝑒 and 𝛽𝑐𝑓𝑒, respectively:

= 𝑀𝐿𝑃 (𝑠 ), 𝛽 = 𝑀𝐿𝑃 (𝑠 ), (2)
𝑐𝑓𝑒 𝛾 𝑐𝑎 𝑐𝑓𝑒 𝛽 𝑐𝑎
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Fig. 2. The architecture of the proposed MFAE-GAN. The MFAE-GAN consists of 4 CFE, 2 FFE modules to sample and refine the different granularity features separately and
omplement the global semantics through MFA-BN module. Denser constraints and image features are fused using the MFA-BN module in FFE.
a
t

Fig. 3. The architecture of CFE Module. CFE module samples coarse-grained global
features representations through word-level channel attention and maps to coarse-
grained feature sketches that are used for affine transformation of the Condition Batch
Normalization to provide explicit spatial information supervision.

which are used for affine transformation of the Condition Batch Nor-
malization (Dumoulin et al., 2016) as follows:

𝑣̃ = 𝑖𝑐(ℎ,𝑤)
(

𝛾𝑐𝑓𝑒(𝑠𝑐𝑎)𝑣̂ + 𝛽𝑐𝑓𝑒(𝑠𝑐𝑎)
)

, (3)

where 𝑣̂ is the batch normalized image features.

3.3. Fine-grained feature enhancement

The architecture of the Fine-grained Feature Enhancement (FFE)
module is shown in Fig. 4. In the later stages of generation, the main
task of the network is to add instance-level details (e.g., texture and
color) to the local areas of generated images. Since CFE has refined
coarse-grained features from the global perspective without considering
independent spatial locations, we first add an extra word-level spatial
attention module to sample fine-grained feature representations. The
word-level spatial attention shares weights among corresponding local
4

Fig. 4. The architecture of FFE Module. FFE adds additional word-level spatial
attention to sample fine-grained representation and maps them to fine-grained feature
sketches to reflect instance-level details. MFA-BN module in FFE fuses text–image at
multi-granularity to provide denser constraint information of semantic attributes than
text descriptions.

locations of multiple channels, which can help the generator disen-
tangle fine-grained visual attributes through prioritized attention to
independent spatial locations to enhance fine-grained local instance-
level details. Specifically, for the 𝑖th image sub-region 𝑣𝑖 represented by

column along the channel direction of image features 𝑣, we calculate
he attention weight between the word embedding 𝑤 and 𝑣𝑖 denoted

by matrix 𝜃 as follows:

𝜃𝑖,𝑗 =
exp

(

𝑒𝑖,𝑗
)

∑𝑙−1
𝑘=0 exp

(

𝑒𝑖,𝑘
)

, (4)

where 𝑒 = 𝑣𝑖𝑤̃. The fine-grained feature representations can be dynami-
cally represented as 𝑓 𝜃 = 𝜃 (𝑤̃)𝑇 . In FFE, we let 𝑓 𝜃 instead of the coarse-
grained feature representations from the channel attention module
map to the sketches to provide explicit spatial information supervision
related to fine-grained features. Then, we also propose a fusion module
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Fig. 5. The architecture of GSP Module. Global Semantics Preservation (GSP) module
uses sentence embedding and image feature maps in a unified visual space to
omplement the global semantics.

alled Multi-granularity Features Adaptive Batch Normalization (MFA-
N) that uses the multi-granularity feature representations instead of
ext embedding to provide denser semantic constraints in FFE.

MFA-BN Module The modulation parameters learned from the
iven sentence embeddings 𝛾𝑐𝑓𝑒 and 𝛽𝑐𝑓𝑒 remain two limitations when

adding fine-grained details at the later stages. First, constraints con-
ditioned on text embedding can only provide sparse semantic infor-
mation, such as the category information of the object in the image
(e.g., ‘‘A zebra stands on a pathway near grass’’.) or an incomplete de-
scription of the object-related attributes (e.g., ‘‘A small bird with a black
head and wings’’). Second, the modulation parameters work on the
multi-granularity features equally. Ideally, we expect the modulation
can encourage the network to focus on refining fine-grained features
while preserving the representations of coarse-grained features. For this
purpose, fine-grained and coarse-grained feature representations are
processed by pooling to eliminate redundant information and then used
to produce the modulation parameters 𝛾𝑓𝑓𝑒 and 𝛽𝑓𝑓𝑒 respectively using

LPs.

𝑓𝑓𝑒 = 𝑀𝐿𝑃𝛾 (𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑓 𝜃)),

𝑓𝑓𝑒 = 𝑀𝐿𝑃𝛽 (𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑓 𝛼)),
(5)

nd are multiplied and added to the normalized activation element-
ise as follows:

𝑣̃ = 𝑖𝑓 (ℎ,𝑤)
(

𝛾𝑓𝑓𝑒(𝑓 𝜃)𝑣̂ + 𝛽𝑓𝑓𝑒(𝑓 𝛼)
)

, (6)

where 𝑖𝑓 (ℎ,𝑤) is fine-grained feature sketches mapped from fine-grained
feature representations.

The effectiveness of the MFA-BN module is essentially from a disen-
tanglement and further enhancement of the sampled multi-granularity
feature representations. The modulation parameters adaptively learned
from multi-granularity features can provide denser constraint informa-
tion of semantic attributes than text descriptions in the fusion process.
The fine-grained feature sketches explicitly illustrate the spatial distri-
bution information of different granularity features. Thus, the MFA-BN
module enables text–image fusion at multi-granularity.

3.4. Global semantics preservation

When the CFE and FFE modules continuously sample and refine
specific granularity features, with the increasing number of sampling
modules, the network may ignore the initialization of other granularity
features, which leads to the loss of global semantics. We address this
issue by complementing the global semantics while sampling features
at different granularities. The architecture of the Global Semantics
Preservation (GSP) module is shown in Fig. 5. Specifically, the GSP
module first converts sentence embedding 𝑠𝑐𝑎 to visual features ̃𝑠𝑐𝑎
and connects intermediate image feature maps 𝑣 along the channel
direction. A concise and practical encoder–decoder network further
 o

5

fuses the concatenated features to complement the global semantics and
maintain semantic integrity as follows:

𝑣′ = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟_𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑣, 𝑠𝑐𝑎). (7)

The GSP module does not change the resolution of the image,
hich ensures that the CFE and FFE modules still dominate the image

efinement process.

.5. Objective functions

We adopt the one-way discriminator associated with the Matching-
ware zero-centered Gradient Penalty (MA-GP) proposed in DF-GAN

Tao et al., 2022). In addition, we add a pre-trained ViT-Base/32 CLIP
odel from CLIPdraw (Frans et al., 2022) as an evaluation index to
aximize the similarity between the given natural language description

nd the generated image. We also add the 𝐶𝐴 loss to our framework
to improve the performance of the network.

Generator objective The adversarial loss of generator is defined as
follows:

𝐺
𝑎𝑑𝑣 = −E𝑥̂∽𝑝𝐺 log𝐷𝑖 (𝑥̂, 𝑠), (8)

where 𝑠 is the sentence embedding, 𝑥̂ is the generated image from
the model distribution 𝑝𝐺, and 𝐷(⋅) calculates the matching degrees
between the image and the sentence. Following StackGAN (Zhang et al.,
2017), the 𝐶𝐴 loss is defined as the Kullback–Leibler (KL) divergence
between the conditional Gaussian distribution and the standard Gaus-
sian distribution of the given sentence embedding, which is calculated
as follows:

𝐶𝐴 = 𝐷𝐾𝐿

(


(

𝜇(𝑠),
∑

(𝑠)
)

∥  (0, 𝐼)
)

, (9)

where 
(

𝜇(𝑠),
∑

(𝑠)
)

is an independent Gaussian distribution, the mean
𝜇(𝑠) and diagonal covariance matrix ∑

(𝑠) are learned jointly with other
parameters of the network. Furthermore, the text–image similarity is
measured via the cosine distance between the CLIP-encoded image and
text representation. The 𝐶𝐿𝐼𝑃 is calculated as follows:

𝐶𝐿𝐼𝑃 = −𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚(𝐶𝐿𝐼𝑃 _𝑇 , 𝐶𝐿𝐼𝑃 _𝐼𝑚𝑔), (10)

where 𝐶𝐿𝐼𝑃 _𝑇 , 𝐶𝐿𝐼𝑃 _𝐼𝑚𝑔 are the CLIP-encoded text and the image
representation. The final objective function of the generator networks
is

𝐺 = 𝐺
𝑎𝑑𝑣 + 𝜆𝐶𝐴 + 𝜆𝑐𝑙𝑖𝑝𝐶𝐿𝐼𝑃 , (11)

where 𝜆 and 𝜆𝑐𝑙𝑖𝑝 are regularization parameters to balance different
terms.

Discriminator objective The objective function of the discrimina-
tor 𝐷 which is associated with the MA-GP loss can be defined as
follows:
𝐷 = 𝐸𝑥∽𝑝data [max(0, 1 −𝐷(𝑥, 𝑠))]

+ 1
2
𝐸𝑥̂∽𝑝𝐺 [max(0, 1 +𝐷(𝑥̂, 𝑠))]

+ 1
2
𝐸𝑥∽𝑝data [max(0, 1 +𝐷(𝑥, 𝑠̂))]

+ 𝜆𝑀𝐴𝐸𝑥∽𝑝data

[(

‖

‖

∇𝑥𝐷(𝑥, 𝑠)‖
‖2

+ ‖

‖

∇𝑠𝐷(𝑥, 𝑠)‖
‖2
)𝑝] ,

(12)

here 𝑥 is the real image from the real image distribution 𝑝data , 𝑠̂ is a
ismatched sentence embedding to paired images. 𝜆𝑀𝐴 is regulariza-

ion parameter for MA-GP loss.

. Experiment

We conduct extensive experiments to evaluate the MFAE-GAN.
n this section, we first introduce the datasets, training details, and
valuation metrics. Then, we compare the performance with the state-
f-the-art GAN-based methods on COCO and CUB datasets. We also
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compare our model, which is pre-trained on a union of CC3M and
CC12M. with large pre-trained models such as autoregressive and
diffusion models under Zero-shot setting through a Zero-shot FID30k
evaluation on MS COCO. Finally, we present a series of ablation studies
on the critical components of MFAE-GAN to validate their effectiveness.

Datasets The CUB dataset has 200 categories with 11788 images
(8,855 images for training and 2,933 images for testing) of birds. Each
image in the CUB dataset has a single object but contains rich shapes,
colors, and posture details, which are always employed to evaluate
the ability of a network to synthesize fine-grained features. 10 text
escriptions are used per image. The COCO dataset consists of 123287
mages (82783 images for training and 40504 images for testing) with
sentence annotations. Compared to CUB, the images in COCO demon-

trate more complex visual scenes containing multiple objects, making
t more challenging for text-to-image generation tasks. The CC series
atasets (CC3M and CC12M) consist of text–image pairs automatically
ollected from the Internet and processed by algorithms. Due to data
ecay over time, the two datasets currently contain approximately 13
illion valid pairs. We randomly exclude 10,000 image data pairs from

ach dataset for qualitative testing and the rest are used to train the
odel for quantitative tests under the zero-shot setting.

Evaluation Metrics We quantitatively measure the performance of
ur MFAE-GAN in terms of Inception Score (IS) (Salimans et al., 2016)
nd Fréchet Inception Distance (FID) (Heusel et al., 2017) to evaluate
hether the generated results are close to the realistic image when pre-

rained on COCO or CUB datasets. Specifically, we obtain IS by employ-
ng a pre-trained Inception-v3 network (Szegedy et al., 2016) to predict
he class label probabilities and compute the KL-divergence between
he marginal class distribution and the conditional class distribution. A
arger IS signifies that the generated images contain richer and more
iscriminative semantic information. FID computes the Fréchet dis-
ance between the synthetic and real images based on the feature map
utput from the pre-prepared Inception-v3 network. A lower FID score
mplies a closer distance between the generated image distribution and
eal image distribution and therefore means the model performs better
hen synthesizing photo-realistic images. We follow previous work and

et the input batch to 64 during testing.
We also adopt the R-precision and CLIPSIM (CS) (Wu et al., 2022) to

valuate the text–image semantic consistency. Specifically, R-precision
ssesses the semantic consistency between the synthetic image and the
iven text description. We utilize pre-trained DAMSM (Xu et al., 2018)
o calculate the cosine similarities between the global image vector and
00 competitor global sentence vectors which consist of one ground
ruth (i.e., R = 1) and 99 randomly selected mismatching descriptions
o quantify the image–text semantic similarity. CLIPSIM uses the CLIP
odel to encode the given image and text descriptions as embedding

ectors and calculate the embedding similarity matrix between input
ext and the generated image. We set the input batch to 64 when
alculating the CLIPSIM and R-precision.

Additionally, we adopt Zero-shot FID30k based on 30,000 images
from COCO test set to evaluate visual quality under Zero-shot setting
when pre-trained on CC series datasets. The calculation process and
settings are consistent with FID scores.

Finally, we assess the generation efficiency of different models by
counting the single 256 × 256 image generation speed on a single 3090
GPU, where the diffusion-based model obtains the images by sampling
over 40 time-steps.

Implementation Details During training MFAE-GAN, the batch
size is set to 64 on an Nvidia RTX 3090 GPU. The generator and
discriminator are trained alternately by minimizing both the generator
loss 𝐺 and discriminator loss 𝐷. Adam (Kingma and Ba, 2014) with
𝛽1 = 0.1 and 𝛽2 = 0.9 is used for network optimization. The learning
ate is set to 0.0001 for the generator and 0.0004 for the discriminator
espectively according to TTUR (Heusel et al., 2017). The model is
rained for 600 epochs on the CUB dataset, 1000 on the COCO dataset

nd 15 epochs on the union of CC3M and CC12M datasets.
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Table 2
Quantitative comparison of state-of-the-art methods and MFAE-GAN on the test set of
CUB and COCO datasets.

Methods CUB COCO

IS↑ FID↓ IS↑ FID↓

DM-GAN (Zhu et al., 2019) 4.75 ± .007 – 30.49 ± .56 32.64
AttnGAN (Xu et al., 2018) 4.36 ± .07 22.37 25.87 ±.47 35.42
DAE-GAN (Ruan et al., 2021) 4.42 ± .04 15.19 35.08 ± 1.16 28.12
MirrorGAN (Qiao et al., 2019) 4.56 ± 0.05 – 26.47 ± 0.41 –
DF-GAN (Tao et al., 2022) 5.04 ± .04 14.81 – 19.32
SSA-GAN (Liao et al., 2022) 5.17 ± .08 15.61 – 19.37
RAT-GAN (Ye et al., 2022) 5.36 ± .20 13.91 – 14.60
LAFITE (Zhou et al., 2022) – 14.58 – 8.21
GALIP (Tao et al., 2023) – 10.08 – 5.85
MFAE-GAN 𝟔.𝟐𝟕 ± .𝟑𝟏 8.34 𝟒𝟎.𝟎𝟑 ± .𝟔𝟐 6.34

Table 3
Text–Image consistency comparison of state-of-the-art methods and MFAE-GAN on the
test set of CUB and COCO datasets.

Methods CUB COCO

R-precision↑ CS↑ R-precision↑ CS↑

DM-GAN (Zhu et al., 2019) 72.37 – 88.56 –
AttnGAN (Xu et al., 2018) 67.82 – 72.31 –
DAE-GAN (Ruan et al., 2021) 85.45 – 92.61 –
MirrorGAN (Qiao et al., 2019) 56.67 – 74.52 –
DF-GAN (Tao et al., 2022) – 0.2920 – 0.2972
SSA-GAN (Liao et al., 2022) 75.9 – 90.6 –
RAT-GAN (Ye et al., 2022) 81.6 – 87.4 –
LAFITE (Zhou et al., 2022) – 0.3125 – 0.3335
GALIP (Tao et al., 2023) – 0.3164 – 0.3338
MFAE-GAN 86.43 0.3309 93.93 0.3379

4.1. Quantitative results

We first compare the image fidelity of our proposed MFAE-GAN
with several state-of-the-art GAN-based methods. For a fair comparison,
all results are taken from the data provided in paper or obtained by
testing the full source code when generating 256 × 256 resolution
images. Data that not provided in the original paper or without the
complete test code are marked as ‘‘-’’. The overall results are sum-
marized in Table 2. Compared with other leading models, our model
improves IS score to 6.27 and decreases FID score to 8.34 on the CUB
dataset. On the COCO dataset, MFAE-GAN improves IS score to 40.03.
We also achieve competitive results compared to GALIP (Tao et al.,
2023) in terms of FID scores (6.34 𝑣.𝑠. 5.85) while significantly outper-
forming the other recent methods. The quantitative evaluation results
demonstrate the effectiveness of sampling and refining the different
granularity features separately in generating more realistic images,
both for a single object with rich detailed attributes and complex scenes
with multiple objects.

To evaluate text–image semantic consistency, we compare the R-
precision and CLIPSIM metrics of MFAE-GAN on CUB and COCO
datasets with state-of-the-art methods. For a fair comparison, we use
the raw data given in the papers of these methods. The results are
shown in Table 3. MFAE-GAN improves the R-precision to 86.43 and
the CLIPSIM to 0.3309 on the CUB dataset. Furthermore, MFAE-GAN
improves the R-precision to 93.93 and the CLIPSIM to 0.3379 on the
COCO dataset. The quantitative comparison shows that MFAE-GAN can
effectively ensure higher semantic consistency between the synthesized
results and the given text.

Moreover, we pre-train our proposed MFAE-GAN on CC series
datasets and conduct a Zero-shot FID30k evaluation on MS COCO to
quantitatively compare the generalization ability of our model and
show the results in Table 4. Although these models are often trained
even with hundreds of times the parameters of our models, MFAE
achieves competitive performance with much smaller model parame-
ters (0.21B trainable parameters) and data (13 m), such as 𝑣.𝑠. GigaGAN
(10.14 𝑣.𝑠. 9.09) or 𝑣.𝑠. SD-v1.5 (10.14 𝑣.𝑠. 9.62) . Our model also
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Table 4
Quantitative comparison of large pre-trained models and MFAE-GAN pre-trained on CC series datasets with the parameter sizes, amount of
training data, performance and inference speeds under the Zero-shot setting on COCO test set at a native 256 × 256 resolution using a 3090
GPU.
Methods Type Param [B] Data size [B] Zero-shot FID30k Speed [s]

DALL-E (Ramesh et al., 2021) AR 12 1.54 27.5 –
Parti-350M (Yu et al., 2022) AR 0.35 0.8 14.1 5.46
Parti-20B (Yu et al., 2022) AR 20 0.8 7.23 –
Cogview (Ding et al., 2021) AR 4 0.03 27.1 –
Cogview2 (Ding et al., 2022) AR 6 0.03 24 2.4
LDM (Rombach et al., 2022a) DF 1.45 0.27 12.63 10.4
SD-v1.5 DF 0.9 3.16 9.12 4.7
DALL⋅E 2 (Ramesh et al.,
2022)

DF 5.5 5.63 10.39 4.1

Imagen (Saharia et al., 2022) DF 7.9 15.36 7.24 9.10
StyleGAN-T (Sauer et al.,
2023)

GAN 1.1 0.25 13.90 0.18

GigaGAN (Kang et al., 2023) GAN 1 0.98 9.09 0.33
GALIP (Tao et al., 2023) GAN 0.31 0.012 12.64 0.08
LAFITE (Zhou et al., 2022) GAN 0.23 0.012 26.94 0.11
MFAE-GAN GAN 0.21 0.013 10.14 0.02
Fig. 6. Qualitative comparison of state-of-the-art GAN-based methods (AttnGAN, DM-GAN, DF-GAN, SSA-GAN) and our proposed MFAE-GAN on the CUB (1st–4th columns) and
COCO datasets (5th–8th columns). The input text descriptions are given in the first row.
performs best compared to methods with similar model parameters
and data sizes, such as GALIP and LAFIFE (10.14 𝑣.𝑠. 12.64 𝑣.𝑠.
26.94). Furthermore, MFAE-GAN significantly improves training and
generation efficiency with limited computational cost requirements. It
takes only 0.02 s to generate a 256 × 256 resolution image in real-time
on a single 3090 GPU, which has an advantage over the GAN-based
StyleGAN-T (0.02𝑠 𝑣.𝑠. 0.18𝑠) and GigaGAN (0.02𝑠 𝑣.𝑠. 0.23𝑠) due to the
smaller model size, while the most important open-source large-scale
pre-training model, SD-1.5 (Rombach et al., 2022b), takes more than
4.7 s.

4.2. Qualitative results

Visual Quality To evaluate the visual quality of generated images,
we first show subjective comparisons between some state-of-the-art
7

models and our proposed MFAE-GAN. For the results on the CUB
dataset, as shown in the first 4 columns in Fig. 6, our MFAE-GAN
significantly improves the anti-deformation compared to AttnGAN and
DM-GAN, which indicates that CFE can enhance the expression of
category-related coarse-grained features. In addition, when expressing
fine-grained semantics, such as the texture on a bird’s wing, our method
can express complex and natural variations of color and texture, while
SSA-GAN and DF-GAN can only synthesize fine-grained features into
the regions with monotonous colors, and the textures within the regions
are bent and deformed (1st, 2nd and 3rd columns). Finally, we also
find that the generated results of MFAE-GAN have better consistency
with the text semantics. For example, in the 3rd column, only MFAE-
GAN accurately generates the image features corresponding to the text
description of ‘‘a touch of white on the underside’’. This indicates that
the FFE module performs better in capturing details. For the results on
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Fig. 7. The generated results when changing the color descriptions of the input text on the CUB dataset. MFAE-GAN can ensure the consistency of text–image fine-grained semantics
while maintaining the diversity of coarse-grained features.
the COCO dataset, as shown in the last 4 columns in Fig. 6, the images
generated by MFAE-GAN contain almost all key semantic objects in the
text description, such as the text descriptions ‘‘a dinner bowl’’, ‘‘a glass
of wine’’ in the 5th column, ‘‘a bus’’, ‘‘a building’’ in the 6th column and
‘‘dishwasher’’, ‘‘pantry’’ in the 8th column. In addition, these objects
generated by MFAE-GAN can be recognized effectively and contain rich
detailed features, such as the decorative patterns on the bus and the
folds on the skier’s clothes. In contrast, the results generated by other
methods generally suffer from the problem of missing key objects and
lacking semantic details.

Text–Image Consistency Our method can explicitly establish con-
nections between text semantics and multi-granularity visual features
through the CFE and FFE modules, allowing us to precisely control
image generation from different text descriptions. We replace the color-
related words in the input text description and show the generated
results in Fig. 7. The results accurately reflect the fine-grained visual
semantics consistent with the corresponding description. In contrast,
the coarse-grained visual semantics (e.g., pose and backgrounds) of
generated images maintaining the diversity, which is a natural require-
ment for the generation models; the bird in the three images of Fig. 7
looks like subspecies with different colors of the same category. This
qualitative result shows that MFAE-GAN effectively disentangles the
visual attributes of different granularities.

Intermediate of Multi-granularity Features To better understand
the intermediate changes and roles of sampled multi-granularity fea-
tures in MFAE-GAN, we show the feature sketches mapped by our
method (2nd row) at different stages in Fig. 8 and compare with
the method which directly predicts the sketches without disentangling
multi-granularity visual attributes (Liao et al., 2022) (1st row). As the
generation stage progresses, mapped sketches from MFAE-GAN express
richer semantics. Specifically, compared with the prediction results in
1st row, the mapped sketches of the CFE module have more precise
boundaries to represent the category-related coarse-grained features
(in red bounding box). For example, in the 2nd and 3rd columns,
the CFE samples the bird’s body position and the demarcation of the
background, and in the 4th column, the CFE samples the distribution
of the bird’s wings and beak. These coarse-grained features sampled
by CFE show a better correspondence with the final generated re-
sults. The mapped sketches from FFE contain richer and more detailed
textures (in blue bounding box) that can guide the distribution of fine-
grained features spatially. For example, in the 5th columns, the mapped
sketches sampled by FFE show complex textures on the wings with
a natural and rich variation, while the result sampled by the method
that directly predicts the sketches only shows rough lines. The above
analysis shows that MFAE-GAN can sample and refine effectively for
specific granularity features at different stages of the refinement process

to guide image generation.
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Table 5
Ablation performance of each component on CUB and COCO about IS, FID and CS.

Methods CUB COCO

IS↑ FID↓ CS↑ IS↑ FID↓ CS↑

w/o CFE 5.32 10.14 0.2986 37.18 9.31 0.3194
w/o FFE 5.02 11.51 0.3142 35.09 10.05 0.3289
w/o MFA-BN 5.39 10.01 0.3091 36.21 9.24 0.3134
w/o GSP 5.67 9.39 0.3217 37.13 8.24 0.3313
MFAE-GAN 6.27 8.34 0.3309 40.03 6.34 0.3379

Table 6
Ablation studies of CFE and FFE step on CUB and COCO about IS, FID and CS.

ID Step CUB COCO

CFE FFE IS↑ FID↓ CS↑ IS↑ FID↓ CS↑

0 1 2 3.77 19.44 0.2817 25.48 22.31 0.2941
1 2 2 4.44 13.28 0.2972 30.23 13.45 0.2991
2 3 2 5.19 10.43 0.3031 33.47 10.21 0.3124
3 4 1 5.77 8.94 0.3102 36.77 8.81 0.3193
4 (Ours) 4 2 6.27 8.34 0.3309 40.03 6.34 0.3379

Generalization Ability in Different Styles The COCO and CUB
datasets contain only images of a single style. To verify the general-
ization ability of MFAE-GAN between different styles, we pre-train the
network using the CC3M and CC12M datasets containing image data
of multiple styles and compare it with SD-1.5, which is pre-trained
based on 3.16 billion text–image pairs, on a randomly selected test
set of CC3M and CC12M. As the results in Fig. 9, the larger model
parameters and training data ensure that SD-1.5 has the advantages
of image details and style diversity. However, thanks to the sampling
of multi-granularity features and text–image semantic alignment under
spatial constraints, MFAE-GAN achieves competitive image quality and
has an advantage in semantic consistency, e.g., in the 4th and 6th
columns of Fig. 9, MFAE-GAN correctly generates the image semantics
corresponding to ‘‘starry night’’ and ‘‘white background’’.

4.3. Ablation studies

The overall experiment results have proved the superiority of our
proposed MFAE-GAN. In this section, we further verify the effectiveness
of each component on CUB and COCO datasets. We first design a
baseline module referring to previous text-to-image methods (Zhang
et al., 2017, 2018), which connects text embedding and image features
directly along the channel direction and fuses the features with 2-layer
convolutions. We replace the CFE and FFE modules separately with the
same number of baseline modules to verify the effectiveness. Moreover,
we verify the effectiveness of the MFA-BN module in FFE by replacing
it with the same fusion strategy as in CFE. Finally, we eliminate the

input of additional text embeddings as a complement to the global
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Fig. 8. Examples of feature sketches mapped by MFAE-GAN and the method that directly predicts the sketches without disentangling multi-granularity visual attributes at early
stages (in red bounding box) and later stages (in blue bounding box) with the same text description as input.
Fig. 9. Examples of different styles images synthesized by Stable Diffusion-v1.5 which is based on LDM (Rombach et al., 2022a) and our proposed MFAE-GAN conditioned on
text descriptions from the test set of CC3M and CC12M datasets. MFAE-GAN achieves better semantic alignment while having competitive image quality.
semantics in the GSP module to verify the effectiveness of this strategy.
Corresponding results are illustrated in Table 5. According to the
results, we can observe model performance decline to varying degrees
when removing CFE, FFE, MFA-BN and GSP separately from MFAE-
GAN. The ablation study shows that as the generation process advances,
the CFE and FFE modules achieve sampling and refinement of different
granularity features via incorporating the spatial and channel attention
modules, which helps to avoid the drop of the network’s refinement
quality. MFA-BN can further achieve multi-granularity feature fusion to
generate photo-realistic images with more explicit category information
and richer instance-level details. GSP can avoid losing global semantics
caused by continuously sampling specific granularity features.

By adjusting the number of CFE and FFE modules, we also show
the effect of different steps for sampling multi-granularity feature on
the generated results. The final generated results of the different com-
bination strategies are resized to 256 × 256 when calculating the
quantitative metrics. Specifically, in ID 0∼4 of Table 6, the IS, FID
and CS scores of the generated images indicate better performance
as the CFE and FFE modules were stacked. In particular, when more
FFE modules are stacked in ID 3 and ID 4, MFAE-GAN acquires better
text–image semantics alignment because the FFE module samples and
refines the expression of fine-grained features.

4.4. Limitations

While MFAE-GAN shows effectiveness improvement in text-to-ima-
ge synthesis, several limitations remain that should be improved in
future work. Firstly, the dataset we use for pre-training is much smaller
9

than other large models, which restricts the ability of the model to
transfer between generating tasks of different styles. Secondly, subject
to the computational cost, we only use a small number of CFE, FFE and
GSP modules in the generation process. Stacking more modules may
benefit in expressing semantic information at a specific granularity.
Thirdly, when the model size is expanded and the training data is ade-
quate, replacing the LSTM-based text encoder with CLIM or T5, which
enables powerful cross-modal learning and understanding capabilities,
may improve the performance.

5. Conclusion

This paper proposes a novel framework, Multi-granularity Feature-
Aware Enhancement GAN (MFAE-GAN), for text-to-image tasks to gen-
erate images containing explicit category information and rich instance-
level details. The framework has three core modules, where Coarse-
grained Feature Enhancement (CFE) module and Fine-grained Fea-
ture Enhancement (FFE) module can sample and refine the different
granularity features separately and impose constraints spatially based
on multi-granularity feature sketches, Global Semantics Preservation
(GSP) module is used to preserve semantic integrity during continuous
sampling for specific granularity features. We also propose a Multi-
granularity Features Adaptive Batch Normalization (MFA-BN) module,
which provides denser semantic constraints than textual semantic in-
formation when adding fine-grained features and achieves text–image
fusion at multi-granularity. Extensive experimental results demonstrate
the effectiveness of our model and a significant improvement in gener-
ating quality and efficiency over state-of-the-art methods.
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