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ABSTRACT
Visually-aware food recommendation recommends food items based
on their visual features. Existing methods typically use the pre-
extracted visual features from food classi�cation models, which
mainly encode the visual content with limited semantic information,
such as the classes and ingredients. Therefore, such features may
not cover the personalized visual preferences of users, termed col-
laborative information, e.g. users may attend to di�erent colors and
textures of food based on their preferred ingredients and cooking
methods. To address this problem, this paper presents a heteroge-
neous multi-task learning framework, termed privileged-channel
infused network (PiNet). It learns the visual features that contain
both the semantic and collaborative information by training the im-
age encoder to simultaneously ful�ll the ingredient prediction and
food recommendation tasks. However, the heterogeneity between
the two tasks may lead to di�erent visual information in need and
di�erent directions in model parameter optimization. To handle
these challenges, PiNet �rst employs a dual-gating module (DGM)
to enable the encoding and passing of di�erent visual information
from the image encoder to individual tasks. Secondly, PiNet adopts
a two-phase training strategy and two prior knowledge incorpora-
tion methods to ensure an e�ective model training. Experimental
results from two real-world datasets show that the visual features
generated by PiNet better attend to the informative image regions,
yielding superior performance.
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1 INTRODUCTION
Visual food logging [15, 23, 26] as an emerging application for
diet management enables users to upload photos of their daily
food intake. Beyond pure diet logging, di�erent machine learn-
ing techniques have been developed for food content analysis and
personalized service provision [13, 17, 21–23, 37]. Food recommen-
dation [7, 9, 29, 37] is one of the key services, which models users’
eating preferences from their interactions with food items and sub-
sequently recommends similar ones. Past e�orts are usually based
on the explicit feedback such as user ratings [8, 11, 18, 29] and the
recipe content such as the ingredients [10, 16, 18, 28, 30, 31, 34].
However, in the visual food logging systems, users may not provide
recipe information for their uploaded images, and the typical user
interactions are implicit feedback, such as likes and comments.

These issues motivated the visually-aware food recommendation
[7, 9, 36, 37], which uses food images and users’ implicit feedback
for recommendation. Recent studies [7, 36] have revealed the im-
portance of images in food recommendation since users’ selection
of food is typically vision-driven. Existing methods typically extend
the conventional recommenders to learn the visual embeddings of
items from the pre-extracted image features, which are from food
classi�cation models. Therefore, these features encode mainly the
visual information related to food classes or ingredients. However,
users’ choices of food may not be literally based on such semantic
information, but also how the food looks [7, 36]. Therefore, such vi-
sual embeddings may not attend to the visual content that captures
users’ personalized visual preferences. As shown in Figure 1, given a
user’s consumption, a classi�er trained for ingredient prediction ex-
tracts the features mainly from ingredient-intensive regions, while
that for recommendation attends to the common visual elements
of the images, namely, the white and red content, referred to as
collaborative information [2]. As such, it is necessary to learn an
image encoder that can preserve both types of information.

To this end, this paper presents a heterogeneous multi-task learn-
ing framework, termed privileged-channel infused network (PiNet),
which learns such an image encoder by making it ful�ll both the
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Figure 1: Semantic information v.s. collaborative informa-
tion. The ingredient prediction and food recommendation
tasks may attend to very di�erent visual information.

ingredient prediction and food recommendation tasks simultane-
ously. Notably, simply combining the models for these two tasks
into a joint one may lead to failure in both tasks, since the hetero-
geneous tasks may require the visual information from di�erent
image regions as illustrated in Figure 1. This makes the image en-
coder di�cult to preserve all the visual information required by
them. To address this issue, PiNet employs a dual-gating module
(DGM) to control the information passing between the image en-
coder and the two tasks. Speci�cally, in the forward pass, DGM uses
two task gates to reshape the uni�ed image embedding produced
by the image encoder to learn the task-aware item embeddings. In
the backward propagation, DGM utilizes a gradient gate to fuse
the gradients passing from both tasks to optimize the image en-
coder. This handles the trade-o� for the image encoder between
fusing the ingredient and collaborative information into a single
visual embedding. Moreover, the image encoder may be optimized
in di�erent directions by heterogeneous tasks, making the model
di�cult to converge in the early training stage and thus leading to
the degraded performance in both tasks. PiNet therefore employs a
two-phase training strategy and two prior knowledge incorpora-
tion methods to ensure an e�ective model training. To summarize,
this paper includes three main contributions:
(1) It proposes a heterogeneous multi-task learning framework, i.e.

PiNet, to learn the visual features of food images that can fuse
both the semantic and collaborative information for improved
recommendation performance.

(2) A dual-gating module is proposed to enable the joint training
of the heterogeneous tasks of ingredient prediction and food
recommendation. It is a general method and may be extended
for any heterogeneous multi-task learning problems.

(3) Considering that only a western food dataset has been published
for the visually-aware food recommendation, a new dataset on
Chinese food is created to complement to the community.

2 RELATEDWORK
Food Recommendation. Food recommendation aims to recom-

mend to a user the food items that match their eating preferences.
It is usually achieved by analyzing a user’s interactions with food
items. User rating is an explicit feedback of user preference. Exist-
ing methods following this line of research [8, 11, 18, 29] form the
user-item interactions with positive/negative ratings. They usually
use collaborative �ltering algorithms for recommendation.

Recipes have been extensively investigated in the literature for
food recommendation. The rich information therein, such as the
ingredients, cooking methods, and nutrition composition, describes
food items at the semantic level and makes a direct link to users’
preferences. Most of the existing methods [10, 16, 18, 28, 30, 31,
34] usually use the ingredients to measure the similarity between
recipes, and then recommend users with similar ones. Interestingly,
nutrition composition has gained much attention as a measure to
either penalize or �lter out the unhealthy food [7, 11, 29, 37].

Food images usually reveal important information of food, such
as the ingredients and cooking methods. Existing algorithms [7, 9,
36, 37] typically use image features as item embedding and then
employ either search or collaborative �ltering methods for food rec-
ommendation. Notably, all of them use pre-extracted visual features.
As illustrated in Figure 1, these features may not cover the visual
elements that matching the users’ personalized visual preferences.

Visually-Aware Recommendation. Visually-aware recommenda-
tion refers to the recommendation tasks delving into the visual
characteristics of items. Besides the applications to food domain as
discussed above, existing studies also investigate the recommen-
dation of fashion clothes [4, 12, 14, 24, 40], E-commerce products
[4, 5], restaurants [6], and point-of-interests (POIs) [35]. Despite
their use of di�erent recommendation models, most of them use
the pre-extracted visual features for their respective downstream
tasks. Only one study [14] explores learning the visual features for
recommendation in an end-to-end manner.

3 PROBLEM STATEMENT
This study aims at encoding the semantic and collaborative visual
features of food images to capture users’ personalized visual pref-
erences. It is motivated by the following observations:
(1) Conventional recommendersmodel the itemembeddings

for collaborative similarity: Given the sets of usersU, items
I, and their interaction pairs (D, 8) where D 2 U and 8 2 I, a
recommender G(.) is trained to learn the latent embeddings of
users and images, denoted as pD and q8 , respectively. Amatching
score ~̂D8 = G(D, 8) is then computed such that ~̂D8 > ~̂D 9 holds
for {98, 9 |8 2 I+

D , 9 2 I\I+
D } where I+

D denotes the set of items
that the user D has interacted with before, such as posts, clicks,
likes, and comments. Matrix factorization-Bayesian personal-
ized ranking (MF-BPR) [25] formulates the predictive model
as G(D, 8) = p)D q8 (note that the bias parameters are omitted
for simplicity), so the higher G(D, 8) is, the more likely D has
interacted with 8 . Therefore, the collaborative similarity re�ects
the density of the shared links between users and items.

(2) Visually-aware recommenders typically learn the item
embeddings from the pre-extracted visual features: Exist-
ing visually-aware recommenders usually extend the conven-
tional collaborative �ltering algorithms to model the visual item
embeddings from the pre-extracted visual features, where the
items belonging to the same class are closer in the feature space.
For example, MF-BPR achieves this by replacing the latent item
embedding q8 with Z (v8 ) where v8 denotes the pre-extracted
visual features and Z (.) is a neural network-based dimensional
reduction mapping. In contrast, VBPR [12] models both the
latent and visual embeddings for users and images.
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Figure 2: Illustration of PiNet that learns to fuse the semantic and collaborative information for visual feature extraction.
In forward path, image encoder E(.) and DGM extract the task-aware embeddings q8 and l8 for food recommendation and
ingredient prediction, respectively. In backward path, DGM fuses the gradients from both tasks to optimize E(.).

Based on the above discussion, a straightforward question is
whether the semantic information encoded in the pre-extracted
visual features contains su�cient information to learn the item
embeddings for collaborative similarity? To answer this, this paper
investigates the semantic and collaborative information contained
in food images. As illustrated in Figure 1, the pre-extracted visual
features may not be su�cient to cover the food regions of collabo-
rative information. This motivates this study to propose the PiNet
framework, which extracts the personalized visual features from
food images according to individual users’ di�erent visual prefer-
ences on them. Given a user-item pair (D, 8), PiNet �rst uses an
image encoder E(.) to extract the visual features of 8 that contain
both the semantic and collaborative information. Subsequently, the
dual-gating module (DGM) re-attends the visual features based on
the user embedding pD to obtain the item embedding q8 . Finally,
the matching score ~̂D8 is computed according to conventional col-
laborative �ltering algorithms, such as MF-BPR.

4 APPROACH
PiNet introduces a heterogeneous multi-task learning framework to
learn the visual features of images that fuse both the semantic and
collaborative information. As illustrated in Figure 2, PiNet uses an
image encoder E(.) to extract the visual features v8 . Subsequently,
the dual-gating module (DGM) learns the task-aware features l8
and q8 for ingredient prediction l8 7! d̂8 and food recommenda-
tion (pD , q8 ) 7! ~̂D8 , respectively, where d̂8 denotes the predicted
ingredients. Notably, PiNet uses the ingredients as ground-truth
labels solely in the training phase. In the testing phase, the branch
of PiNet for ingredient prediction can be excluded. This design
follows a learning paradigm termed learning using privileged in-
formation (LUPI) [20, 32, 33, 38, 39], which aims to incorporate the
external meta-data of the inputs, i.e. the ingredients in our case, in
the training phase to regularize the optimization process.

4.1 Heterogeneous Multi-Task Learning
As shown in Figure 2, PiNet includes two channels, where the task
channel takes as input the user and item embeddings pD and q8 to
compute the preference score ~̂D8 for food recommendation, and

the privileged channel receives the item embedding l8 for ingre-
dient prediction. Both channels share the image encoder E(.) to
extract the uni�ed embedding v8 , and DGM learns to generate q8
and l8 from v8 . As such, E(.) is optimized during training by the
gradients from both tasks. This makes the uni�ed embedding v8
encode both the ingredient and collaborative information. Notably,
the image encoder E(.) can be any of the convolutional neural
network (CNN) models. PiNet chooses the class of ResNet models
due to its e�ciency and successful applications in food recognition
and ingredient prediction [1, 19, 20].

4.1.1 Ingredient Prediction in Privileged Channel. The task of in-
gredient prediction aims to optimize the image encoder E(.) to
encode the semantic information of ingredients in food images. As
illustrated in Figure 2, PiNet learns three mappings in the privileged
channel to ful�ll the ingredient prediction task, including learning
the uni�ed visual embedding E(8) 7! v8 , reshaping for task-aware
features T? (v8 ) 7! l8 , and ingredient prediction X (l8 ) 7! d̂8 , where
E(.) is the image encoder, T? (.) is the task gate for ingredient pre-
diction in DGM, X (.) is a fully-connected layer, and d̂8 contains the
predicted probabilities for ingredients.

Training of the three mappings for ingredient prediction follows
the conventional pipeline of multi-label image classi�cation. Given
the set of images I and the binary ingredient indicator vector d8
for each image 8 , the model parameters are optimized by the binary
cross-entropy (BCE) loss, de�ned by

L? =
’
82I

’
<

[38,< log 3̂8,< + (1 � 38,<) log (1 � 3̂8,<)], (1)

where 38,< and 3̂8,< denote the<-th elements of d8 and d̂8 , respec-
tively. As observed, Equation (1) measures the consistency in the
predictions for both the presence and absence of ingredients.

4.1.2 Food Recommendation in Task Channel. PiNet follows the
collaborative �ltering approach for visually-aware food recommen-
dation in the task channel. As shown in Figure 2, this includes
the learning of user embedding 4<1 (D) 7! pD , task-aware item
embedding TA (v8 ) 7! q8 , and scoring function ~̂D8 = G(D, 8) based
on the user and item embeddings pD and q8 , where 4<1 (.) is an



action to select the user embedding and TA (.) is the task gate for
food recommendation in DGM. Training of these mappings follows
the widely-used BPR method [25], de�ned by

LA =
’

(D,8, 9)2D
� logf (~̂D8 � ~̂D 9 ) (2)

where f (.) is the Sigmoid function and D = {(D, 8, 9) |8 2 I+
D , 9 2

I\I+
D } denotes the set of pairwise training samples. As observed

in Equation (2), given a user D and a positive sample 8 that D has
interacted with, BPR selects a negative sample 9 unseen to D and
constrains that the preference score ~̂D8 should be larger than ~̂D 9 .

There are two commonly-used methods to compute ~̂D8 . The
�rst method as used in BPR-MF computes the inner product of pD
and q8 to measure their “compatibility”, de�ned by

~̂D8 = U + VD + V8 + p|D q8 , (3)
whereU is a global o�set, and VD and V8 are the bias terms.While the
second one as used in VBPR additionally model the latent features
aD and b8 for D and 8 , respectively. It is de�ned by

~̂D8 = U + VD + V8 + p|D q8 + a|D b8 . (4)
In this case, PiNet as shown in Figure 2 can be extended to incorpo-
rate two additional mappings 4<10 (D) 7! aD and 4<11 (8) 7! b8 .

4.2 Dual-Gating Module
Training a single joint model to simultaneously ful�ll the ingre-
dient prediction and food recommendation tasks should handle
the heterogeneity in the visual information required by them, as
illustrated in Figure 1. To address this issue, PiNet employs the
dual-gating module (DGM), which uses the task and gradient gates
to enable the image encoder to encode and pass the information
required by the respective tasks.

4.2.1 Task Gates. The task gatesT? (.) andTA (.) reshape the uni�ed
embeddings v8 of food image 8 to generate the task-aware features
for ingredient prediction and food recommendation, respectively. In
common, both T? (.) and TA (.) aim to learn a gating vector that can
�lter out the information in v8 that is irrelevant to their respective
tasks. In contrast, TA (.) introduces the user embedding pD to make
the feature reshaping process personalized.

As shown in Figure 3, the task gate for ingredient prediction
T? (.) contains the gating and normalization layers to compute the
item embedding l8 for ingredient prediction, de�ned by

ĝ? = X (2>=20C (v8 , g? )), (5)
l8 = q (v8 � ĝ? ), (6)

where g? is a trainable embedding and ĝ? is the gating vector.
2>=20C (.) performs a concatenation of feature vectors. X is a fully-
connected layer followed by a Sigmoid function. � performs element-
wise vector product. q (.) performs feature normalization to make
| |l8 | |2 = | |v8 | |2 where | |.| |2 is the ✓2 norm. This operation aims to
retain the feature norm after gating and amplify the key features.

The users’ personalized visual preferences are encoded in the
task gate for food recommendation TA (.), achieved by incorporating
the user embedding pD to learn the gating vector, de�ned by

ĝA = X (2>=20C (pD , v8 , gA )), (7)
q8 = \ (q (v8 � ĝA )), (8)
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Figure 3: Illustration of task gates that reshape the uni�ed
embedding to obtain the task-aware embeddings.

where gA and ĝA are the trainable and gating vectors, respectively.
\ (.) is a two-layer fully-connected network and each layer is fol-
lowed by a LeakyReLU activation function. As observed, TA (.) al-
lows PiNet to look at di�erent regions of a food image for di�erent
users. During training, TA (.) is optimized to �nd the shared visual
features among the positive items of individual userD to make their
embeddings to be close in the feature space.

4.2.2 Gradient Gate. Fusing the gradients from heterogeneous
tasks to optimize the image encoder E(.) may incur the problem of
�at gradients since the tasks may need di�erent visual information.
This leads to the trade-o� for E(.) between encoding the ingredient
and collaborative information. To address this issue, PiNet employs
the gradient gate F (.), which uses a policy gradient approach to
predict the in�uence of the gradients from LA and �lter those that
strongly go against the gradients from L? .

As shown in Figure 4, when learning from the C-th batch of data,
the gradient gate F (.) monitors the action value s(C�1) 2 [0, 1] for
the (C � 1)-th batch, the values and their changes of the ingredient
prediction loss L? for the (C � 1)-th and C-th batches, i.e. L(C�1)

? ,
L(C )
? , with �L(C�1)

? = L(C�1)
? �L(C�2)

? and �L(C )
? = L(C )

? �L
(C�1)
? .

Subsequently, an action B (C ) is taken based on them to compute the
fused gradients to optimize E(.), de�ned by

⇥(C+1)  [ ⇥(C ) � [ (r⇥L(C )
? + B (C )r⇥L(C )

A ), (9)

where [ is the learning rate, ⇥(C ) is the set of model parameters
of E(.) at the C-th batch, and r⇥L? and r⇥LA are the gradients
computed from L? and LA , respectively.

Speci�cally, the action B (C ) is computed via a classi�er c (.),
which is a fully-connected layer followed by a Softmax activation
function. c (.) maps the 5D state vector of B (C�1) and the monitored
loss values to a 5D action space h = [⌘1, ...,⌘5], de�ned by

h = c ( [L(C�1)
? ,�L(C�1)

? , B (C�1) ,L(C )
? ,�L(C )

? ]). (10)

The action B (C ) is then chosen from 7 = [0, 0.2, 0.5, 0.8, 1] by
B (C ) = 7:̂ , :̂ = 0A6<0G:⌘: . (11)

By de�ning a reward function � (C )B = exp (�L(C+1)
? ) to penalize

the increase in the ingredient prediction loss, c (.) is optimized by
maximizing the probability of B (C ) for the highest � (C )B , de�ned by

L6A03 = � logf (s(C )<0G · � (C )B ), (12)

where s(C )<0G is the probability of F (.) to select B (C ) and f (.) is the
Sigmoid function as used in Equation (2).
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4.3 Training Strategies for PiNet
Training PiNet from scratch may incur the di�culty in model con-
vergence in the early training stage. This is mainly because that
the image encoder E(.) may be optimized in di�erent directions by
gradients from heterogeneous tasks. This may incur the problem
that E(.) cannot encode all the required visual information into
the uni�ed embedding v8 , making the generated item embeddings
q8 and l8 ill-posed. To address this problem, PiNet incorporates the
following methods to ensure an e�ective model training.

4.3.1 Two-Phase Training. Understanding that the di�culty in
model convergence is partially caused by the ine�ective learning of
E(.) due to heterogeneous tasks, the two-phase training strategy
trains the branches of PiNet in the task and privileged channels
independently in the �rst phase to enable their e�ective conver-
gence. The second phase then �ne-tunes the entire model by jointly
training the two branches, as detailed below:
(1) Phase I: Training the two model branches independently is

achieved by eliminating the gradients passed from LA to opti-
mize the model branch in the privileged channel, i.e. disabling
F (.) with B (C ) = 0 in Equation (9). In this case, E(.) and T? (.)
are optimized by L? ; G(.) and TA (.) are optimized by LA .

(2) Phase II: The two model branches are then jointly trained by
allowing the gradients r⇥LA to pass to the privileged channel
to optimize TA (.) and E(.). Speci�cally, the entire model is iter-
atively optimized by L? and LA on di�erent batches of training
data to avoid �at gradients. Besides, the gradient gate F (.) is
optimized by L6A03 to learn the action value B (C ) .

4.3.2 Prior Knowledge Regularization. Encoding collaborative in-
formation inevitably results in the loss of ingredient information.
This may make the image encoder E(.) lose its focus on the regions
of key ingredients to compromise to the diverse content in images.
To alleviate this problem, PiNet employs a prior knowledge regu-
larization (PKR) method, which adds a loss term L?A8>A to L? to
preserve the ingredient information in l8 in Phase II, de�ned by

L?A8>A = | |l8 � l̂8 | |2 . (13)

where l̂8 is the item embedding for ingredient prediction in Phase I,
and | |.| |2 is the ✓2 norm to align the features between l8 and l̂8 .

4.3.3 Prior Knowledge Fusion. The prior knowledge fusion (PKF)
strategy aims to complement PKR by fusing the ingredient informa-
tion of l̂8 into l8 . More importantly, PKF serves as the second source
for l8 to encode the ingredient information, and it may encourage

Table 1: Statistics of the datasets used in the experiments.
Datasets #Interactions #Users #Items #Ingredients
Allrecipes 1,093,845 68,768 45,630 2,736

MeishiChina 1,420,723 76,490 61,072 4,628

the uni�ed embedding v8 to encode more collaborative informa-
tion to enhance the personalization of item embedding q8 for food
recommendation. The fusion operation is de�ned by

l8 = '4!* (l8 + l̂8 � g?: 5 ), (14)

where '4!* (.) is the ReLU activation function, g?:5 is a trainable
gating vector, and � performs element product of vectors.

5 EXPERIMENTS
5.1 Experiment Settings
5.1.1 Datasets. Experiments were conducted on two real-world
datasets for visually-aware food recommendation. One, called All-
recipes, was built byGao et al. [9]. It was crawled fromAllrecipe.com,
a recipe-sharing platform for western food. Notably, this is the only
published dataset so far. To better evaluate the generalization ca-
pability of PiNet, a new dataset, named MeishiChina, was crawled
from meishichina.com for Chinese food recommendation. Statis-
tics of the two datasets are reported in Table 1. In experiments, all
of the raw food images were resized to the size of 224x224. The
raw ingredients were obtained after data cleaning, including Eng-
lish translation for those from the MeishiChina dataset, converting
all uppercase characters to lowercase, removing punctuation and
digits, lemmatization, noun extraction, and removing the ingredi-
ents that appear only once. Both datasets follow the data partition
method as used in [9], where the testing data include the latest 30%
of interactions of each user, the training data include the oldest
ones of 60%, and the rest of 10% for validation.

5.1.2 Evaluation Protocol. Five commonly-used measures were
employed to evaluate the performance of food recommendation,
including Precision, Recall, F1 Score, Normalized discounted cumu-
lative gain (NDCG) [9], and AUC [12]. Given a user D and a pair of
postive-negative items (8, 9), AUC measures the probability that a
recommender obtains ~̂D8 > ~̂D 9 . The other measures compute its
performance for the Top-k ranked items, denoted as Precision@k,
Recall@k, F1 Score@k, and NDCG@k, respectively. Considering
the high dimensionality of image features, negative sampling [9] is
used to make the performance evaluation computationally e�cient.
Speci�cally, 500 negative items were randomly-sampled from the
training set to form the ranking list of each user. To alleviate the
issue of randomness, each evaluation was repeated ten times and
took the mean value as the �nal performance.

5.1.3 Implementation Details. PiNet is a model-agnostic frame-
work, so we investigated BPR-MF [25] and VBPR [12] as the base
recommenders, denoted as PiNet(BPR-MF) and PiNet(VBPR). Be-
sides, PiNet uses ResNet50 as the base image encoder. This makes
all the embeddings used in the privileged channel to have the same
size of 2048. In the task channel, the user and item embeddings
pD and q8 for BPR-MF and VBPR were set to a range of sizes from
{32, 64, 128, 256}. During training, in training phase I, the model
branch in the privileged channel was optimized by the Adam opti-
mizer with the learning rate set from 0.00001 to 0.005. The weights



Table 2: Performance Comparison between PiNet and existing algorithms on the Allrecipes and MeishiChina datasets. Algo-
rithms are categorized by the methods for food representation. (P@10: Precision@10; R@10: Recall@10; F@10: F1 Score@10)

Food
Representation Algorithms Allrecipe Dataset MeishiChina Dataset

AUC P@10 R@10 F@10 NDCG@10 AUC P@10 R@10 F@10 NDCG@10
Latent Embedding BPR-MF 0.5329 0.0641 0.2169 0.0849 0.2338 0.5162 0.0588 0.1682 0.0668 0.1769

Pre-Extracted
Features

BPR-MF(ResNet50) 0.5629 0.0693 0.2588 0.0887 0.2542 0.5492 0.0630 0.1875 0.0718 0.1816
VBPR 0.5896 0.0737 0.2653 0.0916 0.2785 0.5712 0.0642 0.1984 0.0737 0.1844
VECF 0.5980 0.0763 0.2691 0.0931 0.2851 0.5818 0.0648 0.1925 0.0725 0.1877

HAFR-non-i 0.6062 0.0745 0.2683 0.0942 0.3052 0.5829 0.0654 0.1946 0.0740 0.1885

End-to-End
Learning

DVBPR 0.5772 0.0728 0.2668 0.0926 0.2953 0.5613 0.0639 0.1947 0.0729 0.1873
PiNet(BPR-MF) 0.6097 0.0791 0.2724 0.0967 0.3109 0.5911 0.0672 0.1976 0.0763 0.1928
PiNet(VBPR) 0.6308 0.0811 0.2776 0.0994 0.3210 0.6057 0.0688 0.2068 0.0787 0.1984

Improvement of PiNet(VBPR) over the Best Baseline Method 4.06% 6.29% 3.15% 5.52% 5.17% 3.91% 5.20% 4.23% 6.35% 5.25%

for L? and L?A8>A were ranged from 1:1 to 1:0.001. The model in
the task channel was optimized by the Adagrad optimizer with the
learning rate set from 0.0001 to 0.05. The learning rates for both
optimizers were multiplied by 0.1 for every four epochs. The batch
size was selected from {32, 64, 128, 256}. In training phase II, the
weights for L? and LA were ranged from 5:1 to 1:10. Gradient gate
F (.) with L6A03 was optimized by the Adam optimizer with the
learning rate set from 0.00001 to 0.005.

5.2 Comparison with State-of-the-Art Methods
This section reports the experimental performance of PiNet and six
baseline algorithms for food recommendation, including BPR-MF
[25], BPR-MF(ResNet50), VBPR [12], VECF [4], HAFR-non-i [9], and
DVBPR [14]. BPR-MF(ResNet50) replaces the latent item embedding
with the pre-extracted visual features. For a fair comparison, all
algorithms used ResNet50 to extract the visual features. The hyper-
parameters of PiNet and all the baselines were tuned to obtain the
best performance by following Section 5.1.3. From the performance
as reported in Table 2, we can observe the followings:
• BPR-MF using solely the latent embeddings for food items obtains
the worst performance on all performance measures.

• By using the pre-extracted visual features, BPR-MF(ResNet50)
usually achieves an increase in performance of 5-10% on all per-
formance measures as compared with BPR-MF. This veri�es the
importance of visual information in food recommendation.

• BPR-MF(ResNet50) performs the worst among all the algorithms
using pre-extracted visual features on all performance measures.
The reason lies in that the others additionally model the latent
embeddings for users and items. VECF and HAFR-non-i usually
outperform VBPR. This is mainly because they employ attention
modules to learn the user-aware visual features.

• DVBPR obtains a competitive performance to VBPR on all per-
formance measures. This veri�es that both the ingredient and
collaborative information signals of food images are important
to food recommendation.

• Both PiNet(BPR-MF) and PiNet(VBPR) outperform their base
recommenders and the state-of-the-art methods on all perfor-
mance measures. This veri�es that PiNet is able to learn e�ective
visual features for recommendation by fusing the ingredient and
collaborative information of food images.

• PiNet(VBPR) consistently outperforms PiNet(BPR-MF). This in-
dicates that the collaborative information discovered from food
images may not be su�cient to represent the food items for rec-
ommendation. Therefore, modeling the latent embeddings for
users and items leads to further improvement in performance.

5.3 Ablation Study
This section explores the in�uence of various components on the
recommendation performance of PiNet. From Table 3(a), the fol-
lowing observations can be drawn:

• Two-phase training enables e�ective training of PiNet: As
observed, “Base” yields the worst performance in all cases by
training the joint model from scratch. “Base+Pretrain” improves
it by the initialization with the pretrained image encoder and rec-
ommender. “Base+C” consistently outperforms “Base+Pretrain”
and the base recommenders using the pre-extracted ResNet50
features. This veri�es that the two-phase training can learn more
e�ective base image encoders and recommenders in training
phase I to facilitate the following joint training process.

• Task gates learn e�ective task-aware features for food rec-
ommendation: By adding the task gates, “Base+C+TG” consis-
tently improves the recommendation performance of “Base+C”
by a large margin in all cases. This is mainly because that learn-
ing the task-aware features enables PiNet to better control the
trade-o� between encoding the ingredient and collaborative in-
formation by giving a weight to LA higher than that of L? .

• Incorporating the prior knowledge of ingredient informa-
tion improves the recommendation performance: Adding
either “PR” or “PF” can improve the performance of “Base+C+TG”
on all the measures. This veri�es the feasibility of introduc-
ing prior knowledge to alleviate the loss of ingredient infor-
mation encoded in l8 . “Base+C+TG+PR” usually outperforms
“Base+C+TG+PF” since “PF” does not regularize the learning of l8 .
Notably, incorporating both makes “Base+C+TG+PR+PF” further
improves the recommendation performance in all cases.

• Gradient gate alleviates the trade-o� between encoding
the ingredient and collaborative information: Incorporat-
ing “GG” into “Base+C+TG+PR+PF” leads to consistent improve-
ments for food recommendation in all cases. This indicates that,
by limiting the gradients from the recommendation loss LA to
optimize the image encoder E(.), “GG” may alleviate the learning
from noisy collaborative signals, which go against the semantic
ones and may result in a lower performance.

5.4 In-depth Model Analysis
5.4.1 Evaluation of Ingredient Prediction Performance. Following
the ablation study of PiNet for food recommendation, this section
evaluates the in�uence of PiNet on ingredient prediction, as illus-
trated in Table 3(b). The commonly-used Precision@1 [1, 3] is used
to evaluate how well PiNet makes the correct prediction for the



Table 3: The performance in (a) food recommendation
and (b) ingredient prediction of PiNet(BPR-MF) and
PiNet(VBPR) with di�erent combinations of components
on the Allrecipes (AR) andMeishiChina (MC) datasets. Base:
Plain multi-task model without any components; Pretrain:
Initialization with pretrained models; C: Two-phase train-
ing; TG: Task gates; PR: Prior knowledge regularization; PF:
Prior knowledge fusion; GG: Gradient gate.

hhhhhhhhhhComponents
Datasets PiNet(BPR-MF) PiNet(VBPR)

AR MC AR MC
Base 0.2482 0.1668 0.2551 0.1836

Base+Pretrain 0.2547 0.1834 0.2614 0.1947
Base+C 0.2623 0.1896 0.2669 0.2006

Base+C+TG 0.2664 0.1935 0.2697 0.2024
Base+C+TG+PR 0.2673 0.1948 0.2725 0.2037
Base+C+TG+PF 0.2667 0.1954 0.2708 0.2034

Base+C+TG+PR+PF 0.2685 0.1961 0.2752 0.2046
Base+C+TG+PR+PF+GG (PiNet) 0.2724 0.1976 0.2776 0.2068

BPR-MF/VBPR with ResNet50 Features 0.2588 0.1875 0.2653 0.1984
(a) Performance in Food Recommendation Measured by Recall@10

hhhhhhhhhhComponents
Datasets PiNet(BPR-MF) PiNet(VBPR)

AR MC AR MC
Base 0.0428 0.1872 0.2934 0.3151

Base+Pretrain 0.6471 0.5846 0.6487 0.5863
Base+C 0.6557 0.5969 0.6565 0.6069

Base+C+TG 0.6542 0.5952 0.6558 0.6003
Base+C+TG+PR 0.6563 0.5968 0.6579 0.6125
Base+C+TG+PF 0.6567 0.5971 0.6588 0.6246

Base+C+TG+PR+PF 0.6572 0.5983 0.6604 0.6192
Base+C+TG+PR+PF+GG (PiNet) 0.6583 0.6023 0.6628 0.6211

ResNet50 0.6515 0.5939 0.6515 0.5939
(b) Performance in Ingredient Prediction Measured by Precision@1

Top-1 ranked ingredient. As observed, “Base” and “Base+Pretrain”
perform worse than “ResNet50”. This veri�es that encoding collab-
orative information makes the image encoder lose the visual infor-
mation for ingredient prediction. PiNet alleviates it using the two-
phase training strategy, making “Base+C” outperform “ResNet50”.
Notably, adding task gates “TG” lowers the performance of “Base+C”
since a higher weight for LA than L? is used to obtain the best
recommendation performance. To address this, PiNet employs “PR”
and “PF” to encourage the encoding of ingredient information in the
task-aware embedding l8 , and it leads to an improved performance.
More importantly, PiNet incorporates the gradient gate “GG” to
control the optimization of the image encoder by the collaborative
signals. This leads to further improvement in all cases.
5.4.2 Evaluation of Task Gates. This section provides an analysis
on the working mechanism of task gates. Figure 5(a) illustrates the
feature distributions of the gating vectors ĝ? and ĝA for the task
gates T? (.) and TA (.) of PiNet(BPR-MF). As observed, the gating
vector for ingredient prediction ĝ? does not signi�cantly change
the distribution of the uni�ed embedding v8 due to the normaliza-
tion procedure in T? (.). This indicates that most of the information
encoded in v8 is useful for ingredient prediction. In contrast, ĝA
behaves diversely to reshape v8 , indicating a signi�cant di�erence
between the information required for food recommendation and in-
gredient prediction. The behaviors of the task gates can be explained
by the proposed two-phase training method. Since the optimization
of ĝA happens only in Phase II, the �ne-tuning of model will en-
courage the item embedding l8 to retain its feature distribution for
ingredient prediction; while the task gate TA (.) will be optimized
to �lter useful information in v8 for food recommendation.

(a) (b)
Figure 5: Plots of the distributions of (a) the gating vectors of
task gates and (b) the action values taken by gradient gate.
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Figure 6: Visualization of feature attentions indicate that
PiNet and ResNet50 encode di�erent visual information.
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Figure 7: Visualization of personalized feature attentions
from PiNet for food recommendation for di�erent users.
5.4.3 Evaluation of Gradient Gate. This section investigates how
the gradient gate F (.) works during training by analyzing the ac-
tion values B for each batch in the �rst epoch of training phase II.
As shown in Figure 5(b), the strong �uctuation in the action values
is caused by the random selection of batches. At the beginning of
the training process, the mean value of B approximates 0.3, indi-
cating B = 0.2 in most cases. This is because that the encoding of
collaborative information leads to signi�cant changes in the pa-
rameters of the image encoder E(.) and the ingredient prediction
loss L? . Along with the training process, the mean action value
keeps increasing, indicating the convergence of the model. Notably,
F (.) still reduces half of the gradients from the recommendation
loss LA . This indicates that such visual information required for
food recommendation does not contribute to ingredient prediction.
Therefore, decreasing such gradients helps with the stable model
training and leads to performance gains for both tasks.

5.5 Case Studies
5.5.1 Visualization of Ingredient and Collaborative Information en-
coded by PiNet. This section investigates the ingredient and collab-
orative information encoded in the uni�ed embedding v8 extracted
by PiNet. This is achieved by using the Grad-CAM [27] to localize
the feature attentions of v8 in the image based on the gradients
from the losses of the ingredient prediction and food recommen-
dation tasks, respectively. Figure 6 shows such feature attentions
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Figure 8: Error analysis of ingredient prediction using pretrained ResNet50 and PiNet. (a) Bothmodels achieve reasonable per-
formance; (b) ResNet50 fails; (c) PiNet performs worse; and (d) both models perform badly. Bold terms are correct predictions.

generated by PiNet(BPR-MF) for two food images of the same user.
As observed, ingredient information typically attends to the major
ingredient regions in the images. In contrast, collaborative informa-
tion attends to the visual characteristics shared by the images, i.e.
the red and yellow content. In particular, feature attentions of the
bottom image mainly focus on the pineapple regions. We reckon
that it is due to the large egg regions in the upper image. Besides,
the fused information usually covers the attention regions of both
the ingredient and collaborative information. More importantly,
comparing with the feature attentions generated by pretrained
ResNet50, those of PiNet typically attend to broader regions. This
may be a reason for the improved performance of PiNet in both the
ingredient prediction and food recommendation tasks.

5.5.2 Personalized Visual A�entions for Food Recommendation.
This section evaluates PiNet’s capability to learn the personalized
item embedding q8 for food recommendation. In a similar way as
done in Section 5.5.1, the feature attentions generated by PiNet(BPR-
MF) for the food images of two users are shown in Figure 7. As
observed, for the �rst image from left shared by D1 and D2, PiNet
attends to di�erent regions by considering the users’ di�erent food
consumption. Speci�cally, the feature attentions for the images of
D1 mainly cover the regions of meat and red content. Interestingly,
the middle image of beef does not share much with the others in
colors, so its attention regions are mainly on the texture of beef and
the yellow content at bottom. In contrast, the feature attentions on
the shared image of D2 are mainly on the red tomato regions, since
those of the others are mainly on the content with similar color
and shapes. These observations verify that PiNet can capture the
personalized visual elements of food images for individual users.

5.5.3 Error Analysis of Ingredient Prediction. This section presents
an error analysis to investigate how the encoded collaborative infor-
mation helps with ingredient prediction. As shown in Figure 8, the
feature attentions of the item embedding l8 generated by PiNet(BPR-
MF) and the corresponding predicted ingredients with con�dent
scores are compared with those of ResNet50. To summarize, vi-
sual features extracted by PiNet usually attend to broader image
regions and could better detect both the key and minor ingredi-
ents. Speci�cally, as shown in Figure 8(a), when the ingredients can
be clearly distinguished, both models could attend to the regions
of key ingredients. Notably, PiNet better attends to and detects

the ingredient of “bean”. Figure 8(b) depicts that when the key
ingredients are invisible, ResNet50 fails to attend to the correct
regions; while PiNet attends to the pizza-like regions and makes
the correct detections. Moreover, as shown in Figure 8(c), although
ResNet50 achieves a better performance in Top-5 detection, the
encoded collaborative information helps PiNet to correctly detect
“roast” and “powder”. Figure 8(d) illustrates a case when some of
the ingredients over-occupy the image. Both models attend to the
regions of “spinach”, but they fail to predict the key ingredients,
such as “garbanzo”. However, PiNet better attends to the central
image region and detects “bean” and “garlic”. These observations
verify the e�ectiveness of PiNet for ingredient prediction.

5.6 Conclusion
This paper presents a privileged-channel infused network (PiNet)
for visually-aware food recommendation. Conventional methods
typically use the pre-extracted visual features. However, such fea-
tures typically attend to ingredient-intensive regions and cannot
capture users’ personalized visual preferences. PiNet addresses this
issue by learning the visual features to ful�ll both the ingredient pre-
diction and food recommendation tasks. These features therefore
encode both the ingredient and collaborative information required
by these tasks. Experimental results show that PiNet is able to attend
to the image regions of both the ingredients and visual elements
shared by the images of individual users. The broader attention re-
gions on informative food content make PiNet outperform existing
methods for visually-aware food recommendation.

Future work of this study may focus on two directions. First,
PiNet may incorporate a knowledge graph of recipe-ingredient
relations and use the predicted ingredients to model users’ food
preferences at the semantic level. Second, PiNet can leverage the
rich multi-modal recipe information available on the web, such as
the cooking procedures, to further enhance current research.
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